
CSC4005 Project 3 Template

Physics
We have some physics variable declared in headers/physics.h :

gravity_const is the gravity constant when you compute $F=G m{i} m{j} / d^2$.

dt is the time span between two iterations, it can be used when you compute $\Delta v=F\Delta t$ and
$\Delta x=v\Delta t$.

err is a small number used to avoid DivisionByZero error and can accelerate computation. It can be used
like $F=G m{i} m{j} / (d^2 + error)$.

radius2 is the squared radius of particles. It can be used when you determine whether two particles have
collision.

bound_x is the upper bound of X axis. x is between $[0,bound_x]$.

bound_y is the upper bound of Y axis. y is between $[0,bound_y]$.

max_mass is the maximum mass of a particle. You can use it to generate particles.

You may need to modify them to better visualize your result.

Workflow & Logger & Reproduce
Workflow
Simulation with a large amount of bodies is impossible on your own VM, so it is necessay to simulate on
cluster and then transfer the data back to your VM for visualization. We have implemented 2 utilities to help
you do that.

Also, for CUDA implementation, there is no CUDA on our VM, so you can use cluster to generate simulation
results first, then you can transfer the results back to your VM. You can visualize the results on your VM.

Logger

#define bound_x 4000

#define bound_y 4000

#define max_mass 400

#define err 1e-5f

#define dt 0.0001f

#define gravity_const 1000000.0f

#define radius2 0.01f

Logger
We provide a utility called Logger at headers/logger.h , it can save x,y coordinates of multiple frames.
Result will be stored in ./checkpoints/xxxxxxx/ .

Here we give a sample use:

Copy Results Back
You can use scp command.

Execute the following command on your VM.

here -r represent recursively copying all files within a given directory.

You will find the target directory on cluster appears in your local working directory.

Produce a Video
We have implemented video.cpp to help you visualize simulation results generated by cluster.

Use

to compile video GUI application on your VM.

Once you get a checkpoint directory like ./checkpoints/sequential_1000_20221107025155 (from cluster
or somewhere else), you can use

to reproduce result with GUI on your VM.

So, you can visualize the output of your CUDA program!

Compile & Run

Logger l = Logger("cuda", 10000, 4000, 4000);

for (int i = 0; i < n_iterations; i++){

 // compute x, y
 l.save_frame(x, y);
}

scp -r $STUDENT_ID@10.26.200.21:/nfsmnt/$STUDENT_ID/xxxxx .

g++ ./src/video.cpp -o video -I/usr/include -L/usr/local/lib -L/usr/lib -lglut -lGLU -lGL

-lm -DGUI -O2 -std=c++11

./video ./checkpoints/sequential_1000_20221107025155

Compile & Run
Compile
Sequential (command line application):

Sequential (GUI application):

MPI (command line application):

MPI (GUI application):

Pthread (command line application):

Pthread (GUI application):

CUDA (command line application): notice that nvcc is not available on VM, please use cluster.

CUDA (GUI application): notice that nvcc is not available on VM, please use cluster.

OpenMP (command line application):

OpenMP (GUI application):

g++ ./src/sequential.cpp -o seq -O2 -std=c++11

g++ ./src/sequential.cpp -o seqg -I/usr/include -L/usr/local/lib -L/usr/lib -lglut -lGLU -

lGL -lm -DGUI -O2 -std=c++11

mpic++ ./src/mpi.cpp -o mpi -std=c++11

mpic++ ./src/mpi.cpp -o mpig -I/usr/include -L/usr/local/lib -L/usr/lib -lglut -lGLU -lGL

-lm -DGUI -std=c++11

g++ ./src/pthread.cpp -o pthread -lpthread -O2 -std=c++11

g++ ./src/pthread.cpp -o pthreadg -I/usr/include -L/usr/local/lib -L/usr/lib -lglut -lGLU

-lGL -lm -lpthread -DGUI -O2 -std=c++11

nvcc ./src/cuda.cu -o cuda -O2 --std=c++11

nvcc ./src/cuda.cu -o cudag -I/usr/include -L/usr/local/lib -L/usr/lib -lglut -lGLU -lGL -

lm -O2 -DGUI --std=c++11

g++ ./src/openmp.cpp -o openmp -fopenmp -O2 -std=c++11

Run
Sequential (command line mode):

Sequential (GUI mode): please run this on VM (with GUI desktop).

MPI (command line mode):

MPI (GUI mode): please run this on VM (with GUI desktop).

Pthread (command line mode):

Pthread (GUI mode): please run this on VM (with GUI desktop).

CUDA (command line mode): for VM users, please run this on cluster.

CUDA (GUI mode): if you have both nvcc and GUI desktop, you can try this.

OpenMP (command line mode):

OpenMP (GUI mode):

g++ ./src/openmp.cpp -o openmpg -fopenmp -I/usr/include -L/usr/local/lib -L/usr/lib -lglut

-lGLU -lGL -lm -O2 -DGUI -std=c++11

./seq $n_body $n_iterations

./seqg $n_body $n_iterations

mpirun -np $n_processes ./mpi $n_body $n_iterations

mpirun -np $n_processes ./mpig $n_body $n_iterations

./pthread $n_body $n_iterations $n_threads

./pthreadg $n_body $n_iterations $n_threads

./cuda $n_body $n_iterations

./cuda $n_body $n_iterations

openmp $n_body $n_iterations $n_omp_threads

openmpg $n_body $n_iterations $n_omp_threads

Makefile
Makefile helps you simplify compilation command.

where command is one of seq, seqg, mpi, mpig, pthread, pthreadg, cuda, cudag, openmp, openmpg .

When you need to recompile, please first run make clean !

Advertisement: Valgrind
Valgrind is a memory mismanagement detector. It shows you memory leaks, deallocation errors, etc.
Actually, Valgrind is a wrapper around a collection of tools that do many other things (e.g., cache profiling);
however, here we focus on the default tool, memcheck. Memcheck can detect:

Use of uninitialised memory

Reading/writing memory after it has been free'd

Reading/writing off the end of malloc'd blocks

Reading/writing inappropriate areas on the stack

Memory leaks -- where pointers to malloc'd blocks are lost forever

Mismatched use of malloc/new/new [] vs free/delete/delete []

Overlapping src and dst pointers in memcpy() and related functions

Some misuses of the POSIX pthreads API

To use this on our example program, test.c, try

This creates an executable named test. To check for memory leaks during the execution of test, try

This outputs a report to the terminal like

make $command

gcc -o test -g test.c

valgrind --tool=memcheck --leak-check=yes --show-reachable=yes --num-callers=20 --track-

fds=yes ./test

Reference:

[1] http://cs.ecs.baylor.edu/~donahoo/tools/valgrind/

[2] http://senlinzhan.github.io/2017/12/31/valgrind/

Sbatch script
For example, we want to use 20 cores for experiment.

MPI
For MPI program, you can use

=9704== Memcheck, a memory error detector for x86-linux.

==9704== Copyright (C) 2002-2004, and GNU GPL'd, by Julian Seward et al.

==9704== Using valgrind-2.2.0, a program supervision framework for x86-linux.

==9704== Copyright (C) 2000-2004, and GNU GPL'd, by Julian Seward et al.

==9704== For more details, rerun with: -v

==9704==

==9704==

==9704== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 11 from 1)

==9704== malloc/free: in use at exit: 35 bytes in 2 blocks.

==9704== malloc/free: 3 allocs, 1 frees, 47 bytes allocated.

==9704== For counts of detected errors, rerun with: -v

==9704== searching for pointers to 2 not-freed blocks.

==9704== checked 1420940 bytes.

==9704==

==9704== 16 bytes in 1 blocks are definitely lost in loss record 1 of 2

==9704== at 0x1B903D38: malloc (vg_replace_malloc.c:131)
==9704== by 0x80483BF: main (test.c:15)
==9704==

==9704==

==9704== 19 bytes in 1 blocks are definitely lost in loss record 2 of 2

==9704== at 0x1B903D38: malloc (vg_replace_malloc.c:131)
==9704== by 0x8048391: main (test.c:8)
==9704==

==9704== LEAK SUMMARY:

==9704== definitely lost: 35 bytes in 2 blocks.
==9704== possibly lost: 0 bytes in 0 blocks.
==9704== still reachable: 0 bytes in 0 blocks.
==9704== suppressed: 0 bytes in 0 blocks.

http://cs.ecs.baylor.edu/~donahoo/tools/valgrind/
http://senlinzhan.github.io/2017/12/31/valgrind/

Pthread
For pthread program, you can use

here you can create as many threads as you want while the number of cpu cores are fixed.

For a pthread program, we notice that sbatch script contains

the meaning of these two lines are: only one process is started, it can create many threads, where threads
are distributed to all available 20 cpu cores by OS.

CUDA

#!/bin/bash

#SBATCH --job-name=your_job_name # Job name

#SBATCH --nodes=1 # Run all processes on a single node
#SBATCH --ntasks=20 # number of processes = 20
#SBATCH --cpus-per-task=1 # Number of CPU cores allocated to each process (please use
1 here, in comparison with pthread)

#SBATCH --partition=Project # Partition name: Project or Debug (Debug is
default)

cd /nfsmnt/119010355/CSC4005_2022Fall_Demo/project3_template/

mpirun -np 4 ./mpi 1000 100

mpirun -np 20 ./mpi 1000 100

mpirun -np 40 ./mpi 1000 100

#!/bin/bash

#SBATCH --job-name=your_job_name # Job name

#SBATCH --nodes=1 # Run all processes on a single node
#SBATCH --ntasks=1 # number of processes = 1
#SBATCH --cpus-per-task=20 # Number of CPU cores allocated to each process
#SBATCH --partition=Project # Partition name: Project or Debug (Debug is
default)

cd /nfsmnt/119010355/CSC4005_2022Fall_Demo/project3_template/

./pthread 1000 100 4

./pthread 1000 100 20

./pthread 1000 100 40

./pthread 1000 100 80

./pthread 1000 100 120

./pthread 1000 100 200

...

#SBATCH --ntasks=1 # number of processes = 1
#SBATCH --cpus-per-task=20 # Number of CPU cores allocated to each process

For CUDA program, you can use

OpenMP
For OpenMP program, you can use

To submit your job, use

Salloc
If you want to run your program using interactive mode, use

MPI

#!/bin/bash

#SBATCH --job-name CSC3150CUDADemo ## Job name

#SBATCH --gres=gpu:1 ## Number of GPUs required for job execution.
#SBATCH --output result.out ## filename of the output
#SBATCH --partition=Project ## the partitions to run in (Debug or Project)
#SBATCH --ntasks=1 ## number of tasks (analyses) to run
#SBATCH --gpus-per-task=1 ## number of gpus per task
#SBATCH --time=0-00:02:00 ## time for analysis (day-hour:min:sec)

Compile the cuda script using the nvcc compiler

You can compile your codes out of the script and simply srun the executable file.

cd /nfsmnt/119010355/CSC4005_2022Fall_Demo/project3_template/

Run the script

srun ./cuda 10000 100

#!/bin/bash

#SBATCH --job-name job_name ## Job name

#SBATCH --output result.out ## filename of the output
#SBATCH --partition=Project ## the partitions to run in (Debug or Project)
#SBATCH --ntasks=1 ## number of tasks (analyses) to run
#SBATCH --gpus-per-task=1 ## number of gpus per task
#SBATCH --time=0-00:02:00 ## time for analysis (day-hour:min:sec)

Compile the cuda script using the nvcc compiler

You can compile your codes out of the script and simply srun the executable file.

cd /nfsmnt/119010355/CSC4005_2022Fall_Demo/project3_template/

Run the script

./openmp 10000 100 20

sbatch xxx.sh

For MPI porgram, we have learned before:

Pthread
For pthread program,

CUDA
For CUDA program,

OpenMP
For openMP program,

Changelog Nov 14, 2022
1. Fixed wrong CUDA api invoke
The original wrong invoke is

The fixed invoke is

If you have included wrong invoke in your job, you will come across a lot of problems. Sorry for this.

salloc -n20 -c1 # -c1 can be omitted.

mpirun -np 20 ./mpi 1000 1000 100

salloc -n1 -c20 -p Project # we have only 1 process, 20 is the number of cores allocated

per process.

srun ./pthread 1000 1000 100 20 # 20 is the number of threads.

salloc -n1 -c1 --gres=gpu:1 -p Project # require 1 gpu

srun ./cuda 10000 1000

salloc -n1 -c20 -p Project # require 1 gpu

srun ./openmp 10000 1000 20

cudaMemcpy(device_m, m, n_body, cudaMemcpyHostToDevice);

cudaMemcpy(device_m, m, n_body * sizeof(double), cudaMemcpyHostToDevice);

2. Updated physics constant definition
Previously, the physics constant is defined using variable definition. This approach make some trouble
when you try to use them in CUDA program. So, we have changed the definition of physics constants back
to macro definition, like this:

You can directly use them in your cuda program (they are treated as constants on both your host and
device).

3. Changed block_size for CUDA program to 512
Some students reported that their kernel function will not run with block_size = 1024 . So, we have tested
that a smaller block_size is available.

4. Changed some physics constants to obtain better
visualization

We have changed max_mass to 400 instead of 40000000 . Because in the latter case extreme velocity will
occur very frequently.

We have also changed err to 1e-5f instead of 1e-9f to avoid large force.

We have changed gravity_const larger (original value is 1.0f) to make sure the motion of bodies visible.

We have also changed radius2 smaller (original value is 4.0f) to avoid frequent collision.

5. Changed the data generator
We have updated generate_data function.

#define bound_x 4000

#define bound_y 4000

#define max_mass 400

#define err 1e-5f

#define dt 0.0001f

#define gravity_const 1000000.0f

#define radius2 0.01f

#define bound_x 4000

#define bound_y 4000

#define max_mass 400

#define err 1e-5f

#define dt 0.0001f

#define gravity_const 1000000.0f

#define radius2 0.01f

This function can make the initial positions bodies more concentrated, so, you can easily reproduce the
results given by Prof.Chung.

6. Wrong order of time and logger
Previously, l.save_frame(x, y); was executed earlier than
std::chrono::high_resolution_clock::time_point t2

=std::chrono::high_resolution_clock::now(); , so the time was not accurate.

Now we have changed the order into following order:

If yours are not in such order, you may get wrong running time! Please check all versions.

Fixed unpaired use of new/delete
If you are still using

void generate_data(double *m, double *x,double *y,double *vx,double *vy, int n) {

 // TODO: Generate proper initial position and mass for better visualization
 srand((unsigned)time(NULL));
 for (int i = 0; i < n; i++) {
 m[i] = rand() % max_mass + 1.0f;
 x[i] = 2000.0f + rand() % (bound_x / 4);
 y[i] = 2000.0f + rand() % (bound_y / 4);
 vx[i] = 0.0f;
 vy[i] = 0.0f;
 }
}

std::chrono::high_resolution_clock::time_point t1 =

std::chrono::high_resolution_clock::now();

/* computation part */

std::chrono::high_resolution_clock::time_point t2 =

std::chrono::high_resolution_clock::now();// new order

std::chrono::duration<double> time_span = t2 - t1;

printf("Iteration %d, elapsed time: %.3f\n", i, time_span);

l.save_frame(x, y); // new order

It is recommended to switch to

Authors
Bokai Xu

Thank @Peilin Li, @Yangyang Peng, and @SydianAndrewChen for giving valuable suggestions to this series
of templates.

delete m;

delete x;

delete y;

delete vx;

delete vy;

delete[] m;

delete[] x;

delete[] y;

delete[] vx;

delete[] vy;

	CSC4005 Project 3 Template
	Physics
	Workflow & Logger & Reproduce
	Workflow
	Logger
	Copy Results Back
	Produce a Video

	Compile & Run
	Compile
	Run

	Makefile
	Advertisement: Valgrind
	Sbatch script
	MPI
	Pthread
	CUDA
	OpenMP

	Salloc
	MPI
	Pthread
	CUDA
	OpenMP

	Changelog Nov 14, 2022
	1. Fixed wrong CUDA api invoke
	2. Updated physics constant definition
	3. Changed block_size for CUDA program to 512
	4. Changed some physics constants to obtain better visualization
	5. Changed the data generator
	6. Wrong order of time and logger
	Fixed unpaired use of new/delete

	Authors

