
CSC4005 Project 2 Template
This code can run on CSC4005 VM (both arm64 and x86_64 version, both command line mode and GUI
mode).

This code can also run on HPC cluster (only command line mode, no GUI, see instructions below).

Description
The template includes the following component:

1. Sequential version is completed for your reference.

2. MPI version and pthread version are not completed.

To do parallelization, you have multiple choices. You are encouraged to use some brand new method to
partition the data.

Source code: sequential.cpp , pthread.cpp , mpi.cpp .

Getting started
Don't worry about the mathematics part! Please read sequential.cpp to understand the whole picture
before you write your own implementation. (Sequential version is completed, for your reference.)

We have prepared a completed atom function for computing the color given a point! Your only job in this
project is to smartly partition all data to all workers.

/* define a struct called Point to store information of each point */

typedef struct pointtype { int x, y; float color; } Point;

void compute(Point* p) {

 /*

 Give a Point p, compute its color.

 It is not necessary to modify this function, because it is a completed one.

 *** However, to further improve the performance, you may change this function to do

batch computation.

 */

 Compl z, c;

 float lengthsq, temp;

 int k;

 /* scale [0, X_RESN] x [0, Y_RESN] to [-1, 1] x [-1, 1] */

 c.real = ((float) p->x - X_RESN / 2) / (X_RESN / 2);

 c.imag = ((float) p->y - Y_RESN / 2) / (Y_RESN / 2);

 /* the following block is about math. */

 z.real = z.imag = 0.0;

 k = 0;

 do {

 temp = z.real*z.real - z.imag*z.imag + c.real;

 z.imag = 2.0*z.real*z.imag + c.imag;

 z.real = temp;

 lengthsq = z.real*z.real+z.imag*z.imag;

 k++;

 } while (lengthsq < 4.0 && k < max_iteration);

 /* math block end */

 p->color = (float) k / max_iteration;

Dependencies
No extra package is needed on VM or cluster.

Compile
NOTE:

1. All compilation can be finished on VM.

2. HPC cluster only supports compilation of non-GUI versions.

3. Thank @SydianAndrewChen for providing advice for compilation command.

Sequential without GUI (completed, for reference)

Sequential with GUI (completed, for reference)

MPI without GUI (finish #TODO by yourself)

MPI with GUI (finish #TODO by yourself)

pthread without GUI (finish #TODO by yourself)

pthread with GUI (finish #TODO by yourself)

About and

}

g++ ./src/sequential.cpp -o seq -O2 -std=c++11

g++ ./src/sequential.cpp -o seqg -I/usr/include -L/usr/local/lib -L/usr/lib -lglut -lGLU -

lGL -lm -DGUI -O2 -std=c++11

mpic++ ./src/mpi.cpp -o mpi -std=c++11

mpic++ ./src/mpi.cpp -o mpig -I/usr/include -L/usr/local/lib -L/usr/lib -lglut -lGLU -lGL

-lm -DGUI -std=c++11

g++ ./src/pthread.cpp -o pthread -lpthread -O2 -std=c++11

g++ ./src/pthread.cpp -o pthreadg -I/usr/include -L/usr/local/lib -L/usr/lib -lglut -lGLU
-lGL -lm -lpthread -DGUI -O2 -std=c++11

About #ifdef GUI and -DGUI
#ifdef GUI and -DGUI is to control if the compiler should output a GUI application. To enable it, use gcc
xxxx -DGUI to let compiler know it should output a GUI application. To disable it, just omit -DGUI so the
compiler will output a command line application.

The implementation is like this:
write some #ifdef GUI [some cpp code] #endif in cpp source codes. If the variable GUI is defined (pass -
DGUI to g++), the code inside #ifdef GUI #endif will be executed in compilation. It will directly produce a GUI
executable (no need to configure after compilation).

In this template, we have some #ifdef GUI .

About -O2
This argument is a optimization method for your program. Why we want to use it among all versions (mpi ,
pthread , sequential)? Because mpic++ by default utilize O2 optimization. It is not fair for sequential
and pthread version.

#ifdef GUI

#include <GL/glut.h>

#include <GL/gl.h>

#include <GL/glu.h>

#endif

...

#ifdef GUI

void plot() {

...

}

#endif

#ifdef GUI

glutInit(&argc, argv);

glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);

glutInitWindowSize(500, 500);

glutInitWindowPosition(0, 0);

glutCreateWindow("Sequential");

glClearColor(1.0f, 1.0f, 1.0f, 1.0f);

glMatrixMode(GL_PROJECTION);

gluOrtho2D(0, X_RESN, 0, Y_RESN);

glutDisplayFunc(plot);

#endif

...

#ifdef GUI

glutMainLoop();

#endif

About usage of -I -L -l
Please refer to Tutorial 1. We have talked about it.

Run
X_RESN means the resolution of x axis, Y_RESN means the resolution of y axis.

max_iteration is a parameter of Mandelbrot Set computation.

n_proc is the number of processed of MPI.

n_thd is the number of threads of pthread.

Sequential

MPI

pthread

If you choose to build a GUI application, you should see a window as well when you execute it.

Check the correctness of your parallel
program

Not implemented.

Run your job on HPC cluster
For example, we want to use 20 cores for experiment.

sbatch script
For MPI program, you can use

./seq $X_RESN $Y_RESN $max_iteration

./seqg $X_RESN $Y_RESN $max_iteration

mpirun -np $n_proc ./mpi $X_RESN $Y_RESN $max_iteration

mpirun -np $n_proc ./mpig $X_RESN $Y_RESN $max_iteration

./pthread $X_RESN $Y_RESN $max_iteration $n_thd

./pthreadg $X_RESN $Y_RESN $max_iteration $n_thd

For pthread program, you can use

here you can create as many threads as you want while the number of cpu cores are fixed.

For a pthread program, we notice that sbatch script contains

the meaning of these two lines are: only one process is started, it can create many threads, where threads
are distributed to all available 20 cpu cores by OS.

To submit your job, use

Interactive: salloc

#!/bin/bash

#SBATCH --job-name=your_job_name # Job name

#SBATCH --nodes=1 # Run all processes on a single node
#SBATCH --ntasks=20 # number of processes = 20
#SBATCH --cpus-per-task=1 # Number of CPU cores allocated to each process (please use
1 here, in comparison with pthread)

#SBATCH --partition=Project # Partition name: Project or Debug (Debug is
default)

cd /nfsmnt/119010355/CSC4005_2022Fall_Demo/project2_template/

mpirun -np 4 ./mpi 1000 1000 100

mpirun -np 20 ./mpi 1000 1000 100

mpirun -np 40 ./mpi 1000 1000 100

#!/bin/bash

#SBATCH --job-name=your_job_name # Job name

#SBATCH --nodes=1 # Run all processes on a single node
#SBATCH --ntasks=1 # number of processes = 1
#SBATCH --cpus-per-task=20 # Number of CPU cores allocated to each process
#SBATCH --partition=Project # Partition name: Project or Debug (Debug is
default)

cd /nfsmnt/119010355/CSC4005_2022Fall_Demo/project2_template/

./pthread 1000 1000 100 4

./pthread 1000 1000 100 20

./pthread 1000 1000 100 40

./pthread 1000 1000 100 80

./pthread 1000 1000 100 120

./pthread 1000 1000 100 200

...

#SBATCH --ntasks=1 # number of processes = 1
#SBATCH --cpus-per-task=20 # Number of CPU cores allocated to each process

sbatch xxx.sh

Interactive: salloc
If you want to run your program using interactive mode, use

For MPI porgram, we have learned before:

For pthread program,

Any questions about this template, please contact Bokai Xu.

salloc -n20 -c1 # -c1 can be omitted.

mpirun -np 20 ./mpi 1000 1000 100

salloc -n1 -c20 -p Project # we have only 1 process, 20 is the number of cores allocated

per process.

srun ./pthread 1000 1000 100 20 # 20 is the number of threads.

	CSC4005 Project 2 Template
	Description
	Getting started
	Dependencies
	Compile
	Sequential without GUI (completed, for reference)
	Sequential with GUI (completed, for reference)
	MPI without GUI (finish #TODO by yourself)
	MPI with GUI (finish #TODO by yourself)
	pthread without GUI (finish #TODO by yourself)
	pthread with GUI (finish #TODO by yourself)
	About #ifdef GUI and -DGUI
	About -O2
	About usage of -I -L -l

	Run
	Sequential
	MPI
	pthread

	Check the correctness of your parallel program
	Run your job on HPC cluster
	sbatch script
	Interactive: salloc

