
CSC4005
Parallel Programming

Tutorial 5
Bokai Xu, 119010355@link.cuhk.edu.cn

mailto:119010355@link.cuhk.edu.cn

Outline of Tutorial 5
• More about Project 2

• Distribute data points in advance (Static Scheduling)
• Dynamically schedule jobs using minibatch (you may need a thread
pool)

• Modify compute function to improve performance
• GPU & CUDA

• SM core
• Multithreading
• Memory: Registers, Local shared memory (L1 cache), L2 cache, Global

memory
• Blocks and threads

• Utility for Writing Technical Report

More about Project 2
§ The idea is to do data parallelization.

acknowledgement : Zhou Yutao (118010459)

More about Project 2
§ The idea is to do data parallelization.
§ The basic approach is to distribute all data points to workers in

advance.
§ However, workers will not terminate at the same time.
§ Algorithms needed.

acknowledgement : Zhou Yutao (118010459)

More about Project 2

acknowledgement : Zhou Yutao (118010459)

Time consumed

More about Project 2

Possible minimal elapsed time Actual elapsed time

How about randomly allocate data points?

More about Project 2
§ Another approach is to utilize

a thread pool (fixed capacity),
with which we can
dynamically schedule the
computational task.

§ Data points are divided into
many minibatches.

§ Batch size and capacity of
thread pool are possible
experimental variables.

acknowledgement : Zhu Chuyan (119010486)

More about Project 2
possible elapsed time
of dynamic scheduling

elapsed time
of static scheduling

= minibatch

Discussion from Tutorial 4
• Is multithreading always faster than multiprocessing?

• Computational intensive / I/O intensive
• How about using enormous amount of degenerated CPU cores

(simpler instructions, slower), which can only execute simple tasks ---
GPU.

Up to 1024 threads can be reside on a single SM core
at a specific time. But only 32 of them can be
simultaneously executed.

Tesla V100 GPU has 80 SM cores.

CUDA
CUDA thread block (software concept)
• Up to 1024 CUDA threads form a CUDA thread block.
• Data can be distributed to multiple CUDA blocks (depending on

experiment result).
• Each CUDA thread block has an unique BlockIdx.
• Each thread in a CUDA thread block has an unique ThreadIdx.
• We use BlockIdx and ThreadIdx to identify all threads.

Let’s go to hardware part.

GPU structure

• Tesla V100 GPU has 80 SM (streaming
multiprocessor).

acknowledgement : Prof.Wes Armour (Oxford)

1 SM has 4 SM
blocks (different
from CUDA thread
block).

Each has

• 16 FP32 Cores

• 8 FP64 Cores

• 16 INT32 Cores

• 128KB L1 /
Shared memory

• 64 KB Register
File

SM block

32 concurrent
threads (real
concurrent)
can run on 1 SM
(also called a warp)

GPU design philosophy:
SM (Streaming Multiprocessor)

Key feature of SM: Single Instruction Multiple
Data.
32 threads on 1 SM (a warp) execute the same
instructions (kernel function) simultaneously, but
with different data.
// Kernel - Adding two matrices MatA and MatB
__global__ void MatAdd(float MatA[N][N], float MatB[N][N],
float MatC[N][N]) {

int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;
if (i < N && j < N) MatC[i][j] = MatA[i][j] + MatB[i][j];

}
Single instruction (single kernel function)
Multiple data (retrieve unique data by using index)

Wait! So what is the relationship between
32 and 1024… quite confused!
1 CUDA thread block has up to 1024 threads, and they will be divided
into up to 1024/32=32 warps. All warps will be executed within the
same SM.

SM

GPUs do not utilize cpu-style context
switching, while GPU has its own
mechanism of context switch.

// Kernel - Adding two matrices MatA and MatB
__global__ void MatAdd(float MatA[N][N], float MatB[N][N],
float MatC[N][N]) {

int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;
if (i < N && j < N) MatC[i][j] = MatA[i][j] + MatB[i][j];

}
reading data from memory is slower than registers

• When read from/write to memory, another warp may
occupy a SM (because read/write cost ~10$ cycle
(processing unit survival period)).

• Execution alternates between “active” warps, with
warps becoming temporarily “inactive” when waiting
for data.

• A total of 1024 resident threads (either running (only
32) or ready or blocking) can exist simultaneously
within 1 SM.

• Threads in the same warp always execute the same
command.

// Kernel - Adding two matrices MatA and MatB
__global__ void MatAdd(float MatA[N][N], float MatB[N][N],
float MatC[N][N]) {

int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;
if (i < N && j < N) MatC[i][j] = MatA[i][j] + MatB[i][j];

}

Context Switch

SlowFast

acknowledgement : Prof.Wes Armour (Oxford)

SM

1 SM can execute several concurrent CUDA
thread blocks, depending on the resources
needed by all blocks.

It’s about scheduling.

GPU design philosophy: GPU Memory
• Why does a warp contain 32 threads?

(registers)
• Why is the capacity of resident threads is

1024? (discussion question)

L1 shared memory (extremely fast)
Shared within blocks
user can allocate

Registers are the fastest memory on the GPU

Instructions

Cache for Global Memory,
faster than Global Memory

Global Memory, the slowest

GPU Memory
• Registers—These are private to each thread, which means that registers assigned to a

thread are not visible to other threads. The compiler makes decisions about register
utilization.

• L1/Shared memory (SMEM)—Every SM has a fast, on-chip scratchpad memory that can
be used as L1 cache and shared memory. All threads in a CUDA block can share shared
memory, and all CUDA blocks running on a given SM can share the physical memory
resource provided by the SM..

• Read-only memory—Each SM has an instruction cache, constant memory, texture
memory and RO cache, which is read-only to kernel code.

• L2 cache—The L2 cache is shared across all SMs, so every thread in every CUDA block
can access this memory. The NVIDIA A100 GPU has increased the L2 cache size to 40 MB
as compared to 6 MB in V100 GPUs.

• Global memory—This is the framebuffer size of the GPU and DRAM sitting in the GPU.

https://www.nvidia.com/en-us/data-center/a100/

GPU Memory
Challenge: how many registers are we using?
Can you guess how many registers are we using in the following vector_add code?

extern "C" __global__ void vector_add(const float * A, const float * B, float * C, const int size) {
int item = (blockIdx.x * blockDim.x) + threadIdx.x;
if (item < size) {

C[item] = A[item] + B[item];
}

}

https://carpentries-incubator.github.io/lesson-gpu-programming/06-global_local_memory/index.html

https://carpentries-incubator.github.io/lesson-gpu-programming/06-global_local_memory/index.html

GPU Memory
• If we want to make registers use more explicit in the vector_add code, we

can try to rewrite it in a slightly different, but equivalent, way.

extern "C" __global__ void vector_add(const float * A, const float * B, float * C, const int size) {
int item = (blockIdx.x * blockDim.x) + threadIdx.x;
float temp_a, temp_b, temp_c;
if (item < size) {

temp_a = A[item];
temp_b = B[item];
temp_c = temp_a + temp_b;
C[item] = temp_c;

}
}

Hardware and Software

Software

Hardware

Thread

CUDA core
(weak
compared to CPU)

Warp (32 threads)
(minimal software
scheduling unit)

CUDA thread Block (each contains 𝑁 threads)
(𝑁 < 1024, best to be
multiple of 32)
user can control
Size of Block (nthreads)
of Blocks (nblocks)

SM

Device

Multiple cuda thread blocks may exist on 1 SM

Grid (contains multiple
CUDA thread blocks)

Question: Data Partitioning

Based on this architecture, how should we partition data and allocate
them to all workers?
• Use multiple-dimensional index: block index and thread index.

Question: Data Partitioning

Example:
We have int x[100000] and int y[100000].
We want to compute x+y.
Let the capacity of each block be 1024 (maximum).
Number of blocks = 100000 / 1024 + 1 = 98.
For each thread, it only compute x[i]+y[i], where i=block_id * 1024 +
thread_id.

CUDA Variables

Variable Description Property

gridDim Total number of blocks

blockDim Total number of threads in
a block

blockIdx Block id (x dimensional) of
this thread

Threads in a specific block
will get the same blockIdx

threadIdx Thread id (x dimensional)
of this thread in its block

From 0 to 1023. Only valid
within a block.

Example: Vector addition: launch a kernel
1. Declare kernel function

Example: Vector addition: launch a kernel
2. Allocate memory in host first

Example: Vector addition: launch a kernel
3. Initialize data and copy data to device (gpu) global memory

Example: Vector addition: launch a kernel
4. Determine block size and grid size.

Example: Vector addition: launch a kernel
5. Launch the kernel function

Example: Vector addition: launch a kernel
6. Copy result from device memory back to host memory.

Example: Vector addition: launch a kernel
7. Release device memory and host memory.

Example: Vector addition: launch a kernel

Compile:

nvcc vec_add.cu

Run (please use slurm)

salloc -n1 -c1 --gres=gpu:1
srun ./a.out

Thank you!

We will talk more about CUDA in the following weeks.

About report
• Integrate flowchart with

markdown: Typora

• https://support.typora.io/Draw-Diagrams-With-Markdown/

https://support.typora.io/Draw-Diagrams-With-Markdown/

