
CSC4005
Parallel Programming

Tutorial 4
Bokai Xu, 119010355@link.cuhk.edu.cn

mailto:119010355@link.cuhk.edu.cn

Outline of Tutorial 4
• Process model

• What is a process
• How do OS represent a process?
• Process Address Space
• State of a process
• Context Switch
• Type of a process

• Thread model
• Introduction to thread
• Web Server Example
• Multithreading

• Pthread API
• Creating Threads
• Terminating Threads
• Synchronization
• Mutual Exclusive Lock
• Signal & Condition Variable

• Project 2

What is a process
A program is static file.
A process is an instance of a program that is being executed. (dynamic)
A single program can create multiple processes.

Features of Process
§ Each process exists within its own address or memory space.
§ Each process is independent and treated as an isolated process by

the OS.
§ Processes need Inter-process Communication in order to

communicate with each other.

Acknowledgement: Lele Li (TA of CSC3150)

Process-thread model
A method to model the behavior of a program running on a CPU core.
The behavior of multiple instances of multiple programs on multiple
cpu cores.

Earliest:
Only process model

Later:
Process-thread model

CPU context
CPU context

How do OS represent a process?
§ Process Control Block (PCB)
§ A data structure to describe a process.
§ A process maps an unique PCB.
§ A PCB Contains:

§ Resource (memory, files opened)
§ CPU context (registers, program counter, pointers, .. CPU context (�����))
§ …

Process Address Space
Memory addresses are respective.

Each process has such a memory space.

Process Address Space
Memory addresses are respective, not absolute.

Acknowledgement: Prof. Yuanyuan Zhou at UCSD

Process Address Space

Process Address Space

Their memory addresses are identical, however, the values are not the same.

Acknowledgement: Prof. Yuanyuan Zhou at UCSD

State of a process
• Blocked: waiting for something (for i/o result, message from another
process)
• Running:
• Ready:

Context Switch
• We have only one CPU (one set of registers, one set of program
counter, …)

• What is happening:When stopping a running process -> store the
CPU context -> putthe CPU context of another ready process to CPU

• Who is scheduling: OS.

Type of a process
• Computation intensive
• I/O intensive

Introduction of thread
• Necessity: Example of web server
• If we only have a single-thread process (a finite state machine).

Accept user
request

Find
requested
resource in

cache

Load file to
memory from

diskResponse:
return

resource to
user

Multiple user requests

Acknowledgement: Prof. Xiangqun Chen (PKU)

Introduction of thread
• Necessity: Example of web server
• If we only have a single-thread process (a finite state machine).

Accept user
request 1

Find
requested
resource in

cache

Load file to
memory from

diskResponse:
return

resource to
user

user request 1

Introduction of thread
• Necessity: Example of web server
• If we only have a single-thread process (a finite state machine).

Accept user
request

Find
requested
resource in

cache

Load file to
memory from

diskResponse:
return

resource to
user

user request 2: lost

Introduction of thread
• Necessity: Example of web server
• If we only have a single-thread process (a finite state machine).

Accept user
request

Find
requested
resource in

cache

Load file to
memory from

diskResponse:
return

resource to
user

user request 2: lost
user request 3: lost
user request 4: lost
user request 5: lost

Possible solution: non-blocking finite state machine Much more complex to design

Thread

Thread
A thread is a single sequence stream within a process.
Because threads have some of the properties of processes, they are
sometimes called lightweight processes.
§ Threads are not independent from each other unlike processes. As a

result, threads shares with other threads their code section, data
section and OS resources like open files and signals.

§ But, like processes, a thread has its own program counter (PC), a
register set, and a stack space. (like CPU context)

§ Threads are able to be scheduled by the operating system and run as
independent entities within a process.

§ A process can have multiple threads, all of which share the resources
within a process and all of which execute within the same address
space.

Acknowledgement: Lele Li (TA of CSC3150)

Introduction of thread
• Necessity: Example of web server
• Multithread model

Accepter thread

Finder thread 1Finder thread 2
Finder thread 3

Disk
Memory (cache)

Network

1 Process

Timeline
Accepter thread
Accepter thread
Accepter thread
Finder thread 1
Accepter thread
Finder thread 2
Accepter thread
Finder thread 1
Accepter thread
Finder thread 2
Accepter thread
Finder thread 1
Accepter thread

Fast switch

Acknowledgement: Prof. Xiangqun Chen (PKU)

Statistics
For example, the following table compares timing results for the fork() subroutine and the pthreads_create()
subroutine. Timings reflect 50,000 process/thread creations, were performed with the time utility, and units are in
seconds, no optimization flags.

http://www.cs.unibo.it/~ghini/didattica/sistop/pthreads_tutorial/POSIX_Threads_Programming.htm

http://www.cs.unibo.it/~ghini/didattica/sistop/pthreads_tutorial/POSIX_Threads_Programming.htm

Multithreading
Necessity:
• Threads are popular way to improve application through parallelism.

For example, in a browser, multiple tabs can be different threads.
• Threads operate faster than processes due to following reasons:
• 1) Thread creation is much faster.
• 2) Context switching between threads is much faster.
• 3) Threads can be terminated easily
• 4) Communication between threads is faster.

Acknowledgement: Lele Li (TA of CSC3150)

Discussion

• Is multithreading always faster than multiprocessing?
• Computational intensive / I/O intensive

• How about using enormous amount of degenerated CPU cores,
which can only execute simple tasks --- GPU.

Up to 64*32=2048 CUDA threads can be active on
the SM at a time.

GTX1060 GPU has 1280 sm cores.

Implement in C/C++
• multithreading is not supported by the C language standard.
• POSIX Threads (or Pthreads) is a POSIX standard for threads.
• Implementation of pthread is available with gcc/g++ compiler.

#include <pthread.h>

For source code: include pthread header file

For compilation: link pthread library

g++ -o pthread_hello pthread_hello.cpp -lpthread

For run time:

./pthread_hello

http://en.wikipedia.org/wiki/POSIX_Threads

Implement in C/C++
• For most programming languages (java, c, c++), threads of a single

process can run on multiple cpu cores.

Pthread API: Creating Threads
int pthread_create(pthread_t * thread, const pthread_attr_t * attr,
void * (*start_routine)(void *), void *arg);
thread - returns the thread id. (it is like an identity for each thread)
attr - Set to NULL if default thread attributes are used.

Attributes include:

detached state (joinable? Default: PTHREAD_CREATE_JOINABLE. Other option: PTHREAD_CREATE_DETACHED)

scheduling policy (real-time? PTHREAD_INHERIT_SCHED,PTHREAD_EXPLICIT_SCHED,SCHED_OTHER)

scheduling parameter

inheritsched attribute (Default: PTHREAD_EXPLICIT_SCHED Inherit from parent thread: PTHREAD_INHERIT_SCHED)

(more attributes, over the scope of this course)

void * (*start_routine) - pointer to the function to be threaded. Function has a single argument: pointer to void.

*arg - pointer to argument of function. To pass multiple arguments, send a pointer to a structure.

All threads are created by main thread.
Sub threads can create sub threads.

Function variable should be a pointer
to void.

Arguments passed in to the function
should be a pointer to void. But now it
is a char*

Convert to pthread_t*

Convert to void*

Arguments explained

Create identity for each thread

Pthread API: Passing multiple arguments

• Use struct to pass multiple arguments.

Retrieve arguments

Load arguments

Pthread API: Terminating Threads
void pthread_exit(void *retval);
This routine is used to explicitly exit a thread. Typically, the pthread_exit() routine is called
after a thread has completed its work.

This method accepts a mandatory parameter retval which is the pointer to an integer that stores the return
status of the thread terminated. The scope of this variable must be global so that any thread waiting to join
this thread may read the return status.

If main() finishes before the threads it has created, and exits with pthread_exit(), the other threads will
continue to execute. Otherwise, they will be automatically terminated when main() finishes.

Recommendation: Use pthread_exit() to exit from all threads...especially main().

Acknowledgement: Lele Li (TA of CSC3150)

Pthread API: Synchronization

• int pthread_join(pthread_t thread, void *retval);

• Joining is one way to accomplish synchronization between threads.
• The pthread_join() subroutine blocks the calling thread until the

specified thread terminates.

Pthread API: Mut(ual) ex(clusive) Lock
Mutex is an abbreviation for "mutual exclusion". Mutex variables are one of the
primary means of implementing thread synchronization and for protecting shared
data when multiple writes occur.

A mutex variable acts like a "lock" protecting access to a shared data resource.

Acknowledgement: Lele Li (TA of CSC3150)

32

A mutex variable acts like a "lock" protecting access to a shared data resource.

(e.g, char* str)

(e.g, char* str)

(e.g, char* str)

(e.g, char* str)

str.append(“word”)

str.append(“hello”)

Beginning, str=“”

Finally, str=“world hello”

str=“world”

Acknowledgement: Lele Li (TA of CSC3150)

Pthread API: Mutex Lock
• int pthread_mutex_init(pthread_mutex_t *mutex, const

pthread_mutexattr_t *attr);
• int pthread_mutex_destroy(pthread_mutex_t *);
• int pthread_mutex_lock(pthread_mutex_t *mutex); (block until unlock)
• int pthread_mutex_trylock(pthread_mutex_t *mutex); (non-blocking)
• int pthread_mutex_unlock(pthread_mutex_t *mutex);

It initialises the mutex referenced by mutex with attributes specified by attr.
If attr is NULL, the default mutex attributes are used; the effect is the same as passing the
address of a default mutex attributes object.
Upon successful initialisation, the state of the mutex becomes initialised and unlocked.

Acknowledgement: Lele Li (TA of CSC3150)

Pthread API: Mutex Lock
pthread_mutex_lock() routine is used by a thread to acquire a lock on the specified mutex
variable. If the mutex is already locked by another thread, this call will block the calling
thread until the mutex is unlocked.

pthread_mutex_trylock() will attempt to lock a mutex. However, if the mutex is already
locked, the routine will return immediately with a "busy" error code. This routine may be
useful in preventing deadlock conditions, as in a priority-inversion situation.

pthread_mutex_unlock() will unlock a mutex if called by the owning thread. Calling this
routine is required after a thread has completed its use of protected data if other threads
are to acquire the mutex for their work with the protected data. An error will be returned
if:

• If the mutex was already unlocked
• If the mutex is owned by another thread

Acknowledgement: Lele Li (TA of CSC3150)

Pthread API: Signals & Condition Variable
Condition variables must be initialized before it is used:
• int pthread_cond_init(pthread_cond_t *, const pthread_condattr_t *);

Condition variables should be freed if it is no longer used:
• int pthread_cond_destroy(pthread_cond_t *);

Usage:
• int pthread_cond_wait(pthread_cond_t *, pthread_mutex_t *); (block calling thread

until signal received)
• int pthread_cond_signal(pthread_cond_t *); (send a signal to condition variable)
• int pthread_cond_broadcast(pthread_cond_t *);

Acknowledgement: Lele Li (TA of CSC3150)

Pthread API: Signals & Condition
Variable
pthread_cond_wait() blocks the calling thread until the specified
condition is signalled. This routine should be called while mutex is
locked, and it will automatically release the mutex while it waits.
pthread_cond_signal() routine is used to signal (or wake up) another
thread which is waiting on the condition variable. It should be called
after mutex is locked, and must unlock mutex in order for
pthread_cond_wait() routine to complete.
pthread_cond_broadcast() routine should be used instead of
pthread_cond_signal() if more than one thread is in a blocking wait
state.

Acknowledgement: Lele Li (TA of CSC3150)

Project 2

• The TODO is to smartly allocate jobs to all the workers (process or
thread).
• We have provided a template on
https://github.com/bokesyo/CSC4005_2022Fall_Demo/tree/main/pr
oject2_template
• Computation function and GUI are ready for you, you only need to fill
TODOs with your own implementation.
• Make comparison.

https://github.com/bokesyo/CSC4005_2022Fall_Demo/tree/main/project2_template

Project 2: Template Usage

• Don't worry about the mathematics part. We have prepared a
completed atom function for computing the color given a point! Your
only job in this project is to smartly partition all data to all workers.

A atom function to compute the
color of a specific point.
It is not necessary to modify this function,
because it is a completed one.
However, to further improve the performance,
you may change this function to do
batch computation.

Macro usage in header file and source code
To control compilation result.

Run your job on HPC cluster: Batch mode
mpi sbatch script

pthread sbatch script

Run your job on HPC cluster: Batch mode

pthread sbatch script

Run your job on HPC cluster: Batch mode

Finally:

Run your job on HPC cluster: Batch mode

Interactive mode

Thank you!

