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ABSTRACT

Retrieval-augmented generation (RAG) is an effective technique that enables large
language models (LLMs) to utilize external knowledge sources for generation.
However, current RAG systems are solely based on text, rendering it impossible
to utilize vision information like layout and images that play crucial roles in real-
world multi-modality documents. In this paper, we introduce VisRAG, which
tackles this issue by establishing a vision-language model (VLM)-based RAG
pipeline. In this pipeline, instead of first parsing the document to obtain text,
the document is directly embedded using a VLM as an image and then retrieved
to enhance the generation of a VLM. Compared to traditional text-based RAG,
VisRAG maximizes the retention and utilization of the data information in the
original documents, eliminating the information loss introduced during the pars-
ing process. We collect both open-source and synthetic data to train the retriever in
VisRAG and explore a variety of generation methods. Experiments demonstrate
that VisRAG outperforms traditional RAG in both the retrieval and generation
stages, achieving a 25–39% end-to-end performance gain over traditional text-
based RAG pipeline. Further analysis reveals that VisRAG is effective in utilizing
training data and demonstrates strong generalization capability, positioning it as a
promising solution for RAG on multi-modality documents. Our code and data are
available at https://github.com/openbmb/visrag.

1 INTRODUCTION

Trained on massive data, large language models (LLMs) like GPT-4 (Achiam et al., 2023) have
shown strong abilities in common NLP tasks using their parametric knowledge (Wei et al., 2022;
Zhao et al., 2023). However, the issue of hallucination (Ji et al., 2023; Bang et al., 2023) and
the challenge of updating the parametric knowledge limit their real-world application in specific
domains. Retrieval-augmented generation (RAG) alleviates this problem by using a knowledge
retriever, which has access to a custom outer knowledge base, to supply the LLM with the necessary
information for generating outputs (Guu et al., 2020; Lewis et al., 2020; Yu et al., 2023). Open-
source RAG frameworks like llamaindex (Liu, 2022) have been developed to facilitate the research
and deployment of common RAG pipelines.

Typical retrieval-augmented generation (RAG) pipelines are text-based, operating on segmented
texts as retrieval units (Yu et al., 2023; Asai et al., 2024; Yan et al., 2024), which we refer to as
TextRAG. In real-world scenarios, knowledge is often presented in multi-modality documents such
as textbooks and manuals which may have texts and figures intersected together. To acquire texts
from such data sources, a parsing stage is often employed, which typically involves a cascade of
processes, including layout recognition, optical character recognition (OCR), and post-processing
steps like text joining (Zhang et al., 2024). While effective in most scenarios, the parsing process
inevitably introduces errors, which can negatively impact the retrieval and generation phases. More-
over, text-based RAG utilizes only textual information, overlooking potential information present in
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other modalities like images. Although research has been conducted on image retrieval and multi-
modal RAG, these approaches primarily focus on predefined scenarios wherein images and descrip-
tive texts are properly extracted and paired (Wei et al., 2023; Sharifymoghaddam et al., 2024; Zhou
et al., 2024), differing from real-world scenarios where texts and images (including figures) are often
interleaved within a single document page.

The recent development of vision-language models (VLMs) has introduced a promising approach
to understanding complex visual cues in images and documents (OpenBMB, 2024b; Wang et al.,
2024). By integrating a language model with a vision encoder, VLMs demonstrate superior abil-
ities in applications such as describing pictures (Alayrac et al., 2022), explaining figures (Bavishi
et al., 2023), and transcribing (printed and handwritten) text from document images (Laurençon
et al., 2024). Given the robust capabilities of VLMs in capturing multi-modal information present in
images, an intriguing question arises: can the basic language model in the retrieval and generation
components of TextRAG be substituted with a VLM, thus the parsing stage is bypassed and all the
information of the document is preserved?

In this paper, we present Vision-based Retrieval-augmented Generation (VisRAG), to study the fea-
sibility of building a pure-vision RAG pipeline using VLMs. VisRAG is built with a VLM-based
retriever VisRAG-Ret and generator VisRAG-Gen. Inherited the bi-encoder of text-based dense re-
triever (Karpukhin et al., 2020), VisRAG-Ret maps the query and the document into an embedding
space, but utilizing the document’s image directly instead of relying on extracted textual content.
The embedding is obtained by applying weighted mean pooling on the final hidden states of the in-
put text or vision tokens. After retrieving top-k document images, VisRAG processes these images
to generate the answer. While it is straightforward to use a VLM that supports multi-image input for
generation, for VLMs that can only accept one single image, we propose page concatenation and
weighted selection techniques to enable the handling of multiple documents. Throughout the pro-
cess, VisRAG preserves all information in its original visual format, thereby preventing the potential
information loss or distortion that might occur in traditional RAG pipelines.
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Figure 1: TextRAG vs. VisRAG on final gen-
eration accuracy. In TextRAG, parsed text
serves as the basis for both retrieval and gen-
eration processes. In contrast, VisRAG lever-
ages the original document image directly by
using a VLM-based retriever and generator.
Details can be found in Sec. 5.1.

To evaluate VisRAG on real-world multi-modal doc-
uments, we construct datasets from open-source vi-
sual question answering (VQA) datasets and syn-
thetic query-document pairs derived from web-
crawled PDFs. In terms of retrieval, VisRAG-Ret
exhibits superior performance in retrieving multi-
modal documents. It outperforms state-of-the-art
text- and vision-centric retrievers and achieves better
results than solely relying on its constituent vision
encoder or language model under identical training
conditions. For generation, VisRAG-Gen surpasses
traditional text-based generators with open-source
VLMs. With GPT-4o, capable of handling multi-
ple images, VisRAG shows increasing performance
gains with more retrieved documents, indicating the
potential for improved multi-page reasoning in the
future. As depicted in Figure 1, in a direct com-
parison of pipeline performances, VisRAG achieves
a 39% relative improvement over TextRAG using
MiniCPM-V 2.6 as the generator and a 25% rela-
tive improvement with GPT-4o as the generator, at-
tributed to the cascade effect. Further analysis re-
veals that VisRAG possesses better training data efficiency and generalization ability than baseline
models, and demonstrates robustness across both text-centric and vision-centric documents. Vis-
RAG shows great promise in replacing TextRAG as the next-generation standard for RAG pipelines.

2 RELATED WORK

Retrieval-augmented Generation (RAG). RAG enhances large language models (LLMs) by
incorporating retrieved information from external knowledge bases, which assists in addressing
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knowledge-intensive tasks (Guu et al., 2020), reducing hallucinations (Semnani et al., 2023), and
acquiring new knowledge (Vu et al., 2023). An RAG pipeline typically comprises a text-based
retriever that fetches relevant information from the knowledge base given the user query, and an
LLM-based generator that reads the query along with the retrieved information to generate an an-
swer (Shi et al., 2024b; Yu et al., 2023). Prior research on RAG primarily focuses on: a) improving
the retriever, which is typically a text encoder producing text embeddings, through generator feed-
back (Yu et al., 2023; Shi et al., 2024b); b) enhancing the generator via supervised fine-tuning (Lin
et al., 2024; Xu et al., 2024a), in-context pre-training (Shi et al., 2024a), or advanced prompting (Xu
et al., 2024c); and c) developing advanced RAG pipelines to handle long-form or multi-hop ques-
tion answering (Jiang et al., 2023; Asai et al., 2024). However, research on RAG has predominantly
targeted cleaned text corpora like Wikipedia from an academic standpoint. Building effective RAG
pipelines for real-world, multi-modal documents remains a challenge.

Vision-language Models. Recent advancements in vision-language models (VLMs) have greatly
improved fine-grained multi-modal understanding. Since CLIP (Radford et al., 2021) pioneered
contrastive visual-text alignment, models like Flamingo (Alayrac et al., 2022), LLaVA (Liu et al.,
2023b), and BLIP (Li et al., 2022) have expanded LLMs to process visual inputs by connecting
languages models with a CLIP-style vision encoder. Research has then shifted towards more ad-
vanced multi-task and multi-stage pre-training paradigms, enabling models to generalize across a
wide range of vision-language tasks (Liu et al., 2024; Bai et al., 2023; Wang et al., 2023; Dai et al.,
2023). This is followed by notable advancements in high-resolution visual understanding (Xu et al.,
2024b; Bavishi et al., 2023; Lin et al., 2023) and OCR capabilities (Kim et al., 2022; Lee et al.,
2023; Hong et al., 2024; Chen et al., 2024b). More recently, breakthroughs have been made in
multi-image understanding (Li et al., 2024a; Wang et al., 2024). Recent open-source VLMs like
the MiniCPM-V (Yao et al., 2024) and Qwen2-VL (Wang et al., 2024) series combine the merits of
recent techniques, achieving state-of-the-art performance. Those features of VLMs provide a foun-
dation for our vision-based RAG pipeline, which requires multi-modal document understanding.

Multi-modality Retrieval and RAG. Multi-modal retrieval encompasses a wide range of tasks,
such as retrieving a matching image given the text (Han et al., 2017), retrieving a text-image pair
to answer a question (Chang et al., 2022), and retrieving texts that answer the given query about a
provided image (Hu et al., 2023a; Luo et al., 2023), etc. Wei et al. (2023) propose UniIR, a universal
multi-modal retrieval model capable of addressing the aforementioned multiple tasks. The retrieved
information is then employed for incorporating knowledge (Hu et al., 2023b; Luo et al., 2021) or
in-context learning (Tan et al., 2024; Liu et al., 2023a), with the aim of generating answers or im-
ages (Sharifymoghaddam et al., 2024). Prior research mentioned above is conducted on academic
datasets, where texts and images are meticulously extracted from raw data and paired (e.g., images
with their captions), to make it feasible to do separate encoding of data in different modalities. This
hinders their applicability in real-world RAG scenarios, as real-world multi-modal documents are of-
ten presented in mixed modalities, and information may be distributed across various combinations
of modalities. Concurrent works DSE (Ma et al., 2024) and ColPali (Faysse et al., 2024) address this
issue by directly encoding the image of a document for retrieval. However, as these studies focus
on retrieval, they lack a comprehensive comparison of their approaches with text-based retrieval in
both in-domain and out-of-domain settings, and do not conduct an end-to-end RAG evaluation.

3 METHODOLOGY

In this section, we first recap the typical RAG pipeline (Sec. 3.1), then present our VisRAG frame-
work (Sec. 3.2) and the construction of our training and evaluation data (Sec. 3.3).

3.1 PRELIMINARY: RETRIEVAL-AUGMENTED GENERATION

A typical retrieval-augmented generation (RAG) pipeline consists of a retriever and a generator,
both built on large language models (LLMs)1. This pipeline operates on a knowledge corpus D,
which is processed into units for retrieval and generation, denoted as D = {d1, . . . , dn}, where

1In many cases, the retriever uses language models smaller than 1B parameters, which may not be consid-
ered “large”, but we use the term LLM for simplicity.
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Figure 2: TextRAG (left) vs. VisRAG (right). Traditional text-based RAG (TextRAG) relies on
parsed texts for retrieval and generation, losing visual information in multi-modal documents. Our
vision-based RAG (VisRAG) employs a VLM-based retriever and generator to directly process the
document page’s image, thereby preserving all information in the original page.

n is the number of retrieval units. Given a text query q and the retrieval corpus D, the retriever
functions as R : (q,D) → DR, taking q and D as inputs and producing a candidate set DR ⊂ D.
To enable efficient search, the units in the knowledge corpus D are pre-encoded into embeddings.
During RAG pipeline inference, approximate nearest neighbor (ANN) search is applied to retrieve
DR, which serves as the knowledge source for generation. The generation process can be defined as
a function G : (q,DR) → a, where a represents the answer and G denotes the LLM generator. This
is achieved by prompting the LLM with the query and the retrieved units DR to generate an answer.

As shown in Figure 2 (left), traditional RAG frameworks (TextRAG) typically utilize text-based
units for retrieval and generation. However, in real-world scenarios, data often appear in complex,
multi-modal documents, requiring an additional parsing step to obtain text. In this paper, we propose
to use the page as the fundamental unit for retrieval and generation, which is directly processed
by vision language models (VLMs) as an image without further processing during retrieval and
generation. In subsequent sections, we use the terms “page” and “document” interchangeably.

3.2 VISRAG: VISION-BASED RETRIEVAL-AUGMENTED GENERATION

In this section, we present Vision-based Retrieval-augmented Generation (VisRAG), as shown in
Figure 2 (right). In contrast to traditional RAG frameworks which use text segments for both re-
trieval and generation, VisRAG leverages the image of the document to preserve all information.

3.2.1 RETRIEVAL

The first stage of VisRAG, VisRAG-Ret, aims to retrieve a set of pages from the corpus D given
q. We follow the dual-encoder paradigm in text-based dense retrieval models (Karpukhin et al.,
2020) but employ a VLM rather than an LLM to encode the query and page. Specifically, the query
and page are encoded separately as text and image in the VLM, producing in a sequence of hidden
states. To derive the final embedding, and given that we use generative VLMs with causual attention,
we adopt the position-weighted mean pooling over the last-layer VLM hidden states (Muennighoff,
2022), giving higher weights to later tokens:

v =

S∑
i=1

wihi, (1)

where hi is the i-th hidden state, S is the sequence length, wi =
i∑S

j=1 j
is the i-th weight, and v is

the query or page embedding. The similarity score is calculated by the cosine similarity of the query
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and page embedding. VisRAG-Ret is optimized using the InfoNCE loss:

l(q, d+, D−) = − log
exp(s(q, d+)/τ)

exp(s(q, d+)/τ) +
∑

d−∈D− exp(s(q, d−)/τ)
, (2)

where d+, D− are positive document and the negative document set of q, respectively, s(q, d) is the
similarity score between q and d, and τ is the temperature.

3.2.2 GENERATION

The second stage of VisRAG, VisRAG-Gen, focuses on generating the answer according to the user
query and retrieved pages using a VLM. We propose the following mechanisms to enable VisRAG-
Gen to handle multiple retrieved pages in DR for generation. The prompts used for generation is
presented in Appendix E.

Page Concatenation. A straightforward approach is to concatenate all pages in DR into a single
image to accommodate most VLMs that are trained to accept a single image. Formally,

a←− VLM-Single(q,Concat({d|d ∈ DR})), (3)

where VLM-Single is a VLM that accepts a single image with text prompt and Concat is the image
concatenation operation. In this paper, we experiment with horizontal concatenation.

Weighted Selection. Another approach is to ask the VLM to generate an answer for every page
from top-k, and select a final one with the highest confidence (Lewis et al., 2020; Shi et al., 2024b).
The final confidence is defined as the weighted generation probability of the answer:

P (a|q,DR) = P (a|q, d) · λ(q, d), (4)

where P (a|d, q) is calculated as the reciprocal of the perplexity of generating the answer a condi-
tioned on the single document d, and λ(d, q) is the normalized retrieval score:

λ(q, d) =
es(q,d)∑

d′∈DR
es(q,d′)

. (5)

VLMs Accepting Multiple Images. Some recent VLMs like MiniCPM-V 2.6 (OpenBMB,
2024b) and Qwen-VL 2 (Wang et al., 2024) are designed and trained to accept multiple images
as input to perform cross-image reasoning. This capability may be useful for the generation as the
required information could be located on a single page from the retrieved document set DR for
single-hop questions or spread across multiple pages for multi-hop questions. Formally, we have

a←− VLM-Multi(q, {d|d ∈ DR}), (6)

where VLM-Multi is the VLM that accepts multiple images with text prompt.

3.3 DATA CONSTRUCTION

To effectively build and evaluate RAG pipelines on multi-modal documents, we construct our
datasets using a combination of visual question answering (VQA) datasets and synthetic data. The
statistics of our constructed dataset are provided in Table 1.

Data Sources. We collect question-document pairs from a series of VQA datasets, targeting dif-
ferent document types: MP-DocVQA (Tito et al., 2023) for industrial documents, ArXivQA (Li
et al., 2024b), ChartQA (Masry et al., 2022), InfographicsVQA (Mathew et al., 2022), and
PlotQA (Methani et al., 2020) for various figure types, and SlideVQA (Tanaka et al., 2023) for
presentation slides. All datasets feature questions that can be answered using a single document
(page), except for SlideVQA, which includes multi-hop questions requiring information from mul-
tiple pages. We follow the original datasets’ train-test splits, except for MP-DocVQA and Info-
graphicsVQA, where the validation split serves as our evaluation set. Additionally, we enhance our
training set by collecting openly available PDFs from online sources and generating queries using
GPT-4o (OpenAI, 2024), with details presented in Appendix A.1. We assemble the retrieval corpus
by gathering the positive document associated with each query from the training and evaluation sets.
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Table 1: Dataset statistics. We collect data from visual question answering (VQA) datasets for train-
ing and evaluation and synthetic additional query-document pairs for training. We apply filtering on
VQA datasets to remove context-dependent queries that are not suitable for retrieval.

Source Document Type % Filtered Train Evaluation
# Q-D Pairs # Q # D # Pos. D per Q

ArXivQA (2024b) Arxiv Figures 14% 25,856 8,640 8,066 1.00
ChartQA (2022) Charts 41% 4,224 718 500 1.00
MP-DocVQA (2023) Industrial Documents 69% 10,624 1,879 741 1.00
InfoVQA (2022) Infographics 26% 17,664 2,046 459 1.00
PlotQA (2020) Scientific Plots 44% 56,192 11,307 9,593 1.00
SlideVQA (2023) Slide Decks 22% 8,192 1,640 1,284 1.34

Synthetic Various - 239,358 - - -

Query Filtering. Some queries extracted from VQA datasets are context-dependent, which lack
specificity to a certain entity. For instance, the response to “Where was the conference held?” varies
based on the contextual document. Using such context-dependent queries in open retrieval tasks
is ineffective because they lack strong document specificity. To address this, we implement an
additional filtering stage to remove these context-dependent questions, where we prompt llama-3-8b-
instruct (AI@Meta, 2024) with human-annotated in-context samples to generate the classification
label. Table 1 shows a substantial reduction in context-dependent questions across data sources. The
details of filtering are presented in Appendix A.2.

Evaluation Metrics. For retrieval, we evaluate the performance using MRR@10 and Recall@10.
For generation, consistent with methods applied to the source datasets, we report the answer ac-
curacy, employing a relaxed exact match metric which allows a 5% error margin for numeric re-
sponses (Masry et al., 2022; Methani et al., 2020).

4 EXPERIMENTAL METHODOLOGY

Document Parsing. To assess the performance of VisRAG in comparison to TextRAG, we em-
ploy specific text extraction methods. The first approach, referred to as “(OCR)” in subsequent text,
is a pipeline that initially leverages PPOCR (Du et al., 2020) to identify text regions, then combines
vertically aligned and horizontally proximate text boxes to reduce fragmentation. The second ap-
proach, termed “(Captioner)”, is an end-to-end model-based method. In this approach, we apply
MiniCPM-V 2.0 (OpenBMB, 2024a; Yao et al., 2024), fine-tuned on paired (document image, ex-
tracted text) data, to directly parse text from the document image. Details of the parsing processes
are presented in Appendix B.

Retrieval Experiments. VisRAG-Ret is a document embedding model built on MiniCPM-V
2.0, a vision-language model that integrates SigLIP (Zhai et al., 2023) as the vision encoder and
MiniCPM (Hu et al., 2024) as the language model. To ensure fair comparisons, we organize experi-
ments into three settings: off-the-shelf, out-of-domain, and in-domain, as depicted below.

• Off-the-shelf: We directly evaluate popular text and image retrieval models on extracted
texts, including BM25 (OCR), a lexical model; bge-large-en-v1.5 (Xiao et al., 2023) (OCR)
and NV-Embed-v2 (Lee et al., 2024) (OCR), state-of-the-art text embedding models with
sizes 335M and 7.85B, respectively; and SigLIP, a CLIP-style (Radford et al., 2021) vision
model serving as the encoder for MiniCPM-V series.

• Out-of-domain: Models in this category are trained solely on synthetic data and evaluated
on the VQA datasets, lacking in-domain supervision, in order to show the models’ gener-
alization capabilities. These models include textual models MiniCPM (OCR), MiniCPM
(Captioner), and vision model SigLIP. MiniCPM (OCR) and (Captioner) are MiniCPM-
based text embedding models trained and evaluated on extracted text.

• In-domain: Models in this category are trained on the blend of the VQA training data and
synthetic data. We evaluate the same set of models as in the out-of-domain setting to show
model performance when supervised labels are available. We also run ColPali (Faysse
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Table 2: Overall retrieval performance in MRR@10. The best retrieval performance in each group
is marked in bold, and the second best performance is underlined. ColPali is trained on its synthetic
data and datasets marked with †. Corresponding Recall@10 performance can be found in Table 6.

Model # Para. ArxivQA ChartQA DocVQA InfoVQA PlotQA SlideVQA Average
(a) Off-the-shelf Models

BM25 (OCR) n.a. 32.30 41.64 71.92 63.99 35.32 84.57 54.96
bge-large (2023) (OCR) 335M 27.63 39.92 50.21 67.01 30.95 79.94 49.28
NV-Embed-v2 (2024) (OCR) 7.85B 45.64 52.58 73.01 81.70 36.10 91.73 63.46
SigLIP (2023) 883M 10.93 32.95 25.66 38.77 12.90 52.50 28.95

(b) Out-of-domain: Models Fine-tuned on Synthetic Data
MiniCPM (OCR) 2.72B 37.19 43.34 68.57 75.36 21.93 86.80 55.53
MiniCPM (Captioner) 2.72B 34.59 46.65 64.25 71.84 18.85 82.96 53.19
SigLIP (2023) 883M 37.01 49.34 58.32 63.55 21.23 85.32 52.46
VisRAG-Ret 3.43B 59.03 51.18 73.28 81.17 28.70 90.38 63.96

(c) In-domain: Models Fine-tuned on Synthetic and In-domain data
MiniCPM (OCR) 2.72B 47.36 54.43 74.13 80.11 41.33 90.49 64.64
MiniCPM (Captioner) 2.72B 47.53 54.28 68.87 76.46 35.93 85.45 61.42
SigLIP (2023) 883M 50.22 61.44 66.01 72.87 40.15 89.51 63.37
ColPali (2024) 2.92B 64.36† 56.46 84.10† 78.74† 30.37 93.91 67.99
VisRAG-Ret 3.43B 67.00 59.34 77.65 84.05 40.26 91.71 70.00

et al., 2024) on our evaluation data. ColPali is a page embedding model that encodes a page
into multiple vectors. Its training set includes its own synthetic data as well as ArxivQA,
DocVQA, and InfographicsVQA (Faysse et al., 2024).

We report VisRAG-Ret’s performance in both out-of-domain and in-domain settings.

Generation Experiments. To evaluate generation performance, we fix the retrieval model to
VisRAG-Ret and report the performance of various generation models and methods. For VisRAG-
Gen, we compare the performance of the single-image VLM MiniCPM-V 2.0, which only accepts a
single image, against the multi-image VLM MiniCPM-V 2.6 (OpenBMB, 2024b; Yao et al., 2024)
and GPT-4o (OpenAI, 2024). MiniCPM-V 2.6 is an upgrade of MiniCPM-V 2.0, incorporating
Qwen2-7B (Yang et al., 2024) as the language model and supporting multi-image input. We evaluate
the performance of page concatenation and weighted selection on the single-image VLM. Addition-
ally, we report the performance of text-based generation baselines, including MiniCPM (OCR) and
GPT-4o (OCR), where only extracted texts are used for generation. For all experiments, we report
results using the top-1, top-2, and top-3 retrieved documents, as well as an “Oracle” condition where
the model is provided with only the positive document(s) to show the performance upper bound.

Implementation Details. VisRAG-Ret is fine-tuned using in-batch negatives (Karpukhin et al.,
2020) for one epoch with a batch size of 128 on 8 NVIDIA A100 80GB GPUs. The temperature
parameter in Equation 2 is set to 0.02. Baseline retrievers are fine-tuned with the same hyper-
parameters, and textual baselines utilize extracted text data as document-side input. The generation
part does not use any fine-tuning; we directly use off-the-shelf LLMs/VLMs for generation.

5 EVALUATION RESULTS

5.1 OVERALL PERFORMANCE

Retrieval Performance. In this experiment, we compare VisRAG-Ret with (a) off-the-shelf mod-
els, and trained baselines in (b) out-of-domain setting where we only leverage synthetic data, and in
(c) in-domain setting where we leverage both in-domain and synthetic training data.

As shown in Table 2(a)(b), VisRAG-Ret, trained on out-of-domain data, outperforms all off-the-shelf
baselines, including both text and vision models. It significantly outperforms both BM25 and bge-
large, and surpasses NV-Embed-v2, a state-of-the-art text retrieval model with 7.85B parameters.
Note that bge-large and NV-Embed-v2 are trained on millions of query-doc pairs (Xiao et al., 2023;
Lee et al., 2024), which are 10x more than our training data. Although bge-large outperforms BM25
on benchmarks like MTEB (Muennighoff et al., 2023), it fails on our datasets, indicating text-based
embedding models trained on clean text struggle with texts parsed from real-world documents.
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Table 3: Overall generation performance in accuracy (%). Different generation models and methods
utilize the same retriever, VisRAG. Performance relative to Oracle (using the ground-truth docu-
ment(s) for generation) is colored in blue.

Model / Method Input ArxivQA ChartQA DocVQA InfoVQA PlotQA SlideVQA Average
(a) TextRAG-Gen: Text-based Generation

MiniCPM (OCR)

top-1 42.87 (96.0%) 24.79 (83.6%) 27.99 (79.1%) 16.86 (88.5%) 21.97 (97.8%) 25.43 (91.2%) 26.65 (89.3%)
top-2 42.57 (95.4%) 25.07 (84.5%) 28.21 (79.7%) 16.32 (85.6%) 22.18 (98.8%) 26.83 (96.3%) 26.86 (90.0%)
top-3 42.63 (95.5%) 24.65 (83.1%) 25.49 (72.0%) 15.30 (80.3%) 21.52 (95.8%) 27.38 (98.2%) 26.16 (87.7%)
Oracle 44.64 (100%) 29.67 (100%) 35.39 (100%) 19.06 (100%) 22.46 (100%) 27.87 (100%) 29.85 (100%)

GPT-4o (OCR)

top-1 58.51 (94.8%) 39.69 (65.8%) 44.86 (77.1%) 37.34 (84.5%) 25.70 (94.4%) 41.95 (83.0%) 41.34 (82.1%)
top-2 58.00 (94.0%) 41.36 (68.6%) 47.74 (82.1%) 39.00 (88.3%) 18.42 (67.6%) 45.85 (90.7%) 41.73 (82.9%)
top-3 58.54 (94.8%) 40.25 (66.7%) 48.43 (83.3%) 39.69 (89.8%) 17.87 (65.6%) 45.12 (89.3%) 41.65 (82.7%)
Oracle 61.72 (100%) 60.31 (100%) 58.17 (100%) 44.18 (100%) 27.24 (100%) 50.55 (100%) 50.36 (100%)

(b) VisRAG-Gen: Single-image VLM (MiniCPM-V 2.0)

Page Concatenation

top-1 56.82 (94.5%) 28.97 (76.8%) 36.83 (76.1%) 24.29 (85.7%) 25.95 (84.1%) 31.10 (89.7%) 34.44 (84.8%)
top-2 56.22 (93.5%) 25.63 (67.9%) 27.83 (57.5%) 18.96 (66.9%) 25.73 (83.4%) 29.75 (85.8%) 30.96 (76.3%)
top-3 55.49 (92.3%) 25.35 (67.2%) 20.81 (43.0%) 16.42 (57.9%) 24.37 (79.0%) 28.17 (81.2%) 28.62 (70.5%)
Oracle 60.10 (100%) 37.74 (100%) 48.38 (100%) 28.35 (100%) 30.84 (100%) 34.68 (100%) 40.60 (100%)

Weighted Selection

top-1 56.82 (94.5%) 28.97 (76.8%) 36.83 (76.1%) 24.29 (85.7%) 25.95 (84.1%) 33.78 (86.3%) 34.44 (84.5%)
top-2 56.67 (94.3%) 29.25 (77.5%) 37.15 (76.8%) 24.24 (85.5%) 25.98 (84.3%) 34.33 (87.7%) 34.60 (84.9%)
top-3 57.12 (95.0%) 29.53 (78.2%) 35.76 (73.9%) 24.00 (84.7%) 28.53 (92.5%) 34.57 (88.3%) 34.92 (85.7%)
Oracle 60.10 (100%) 37.74 (100%) 48.38 (100%) 28.35 (100%) 30.84 (100%) 39.15 (100%) 40.76 (100%)

(c) VisRAG-Gen: Multi-image VLM

MiniCPM-V 2.6

top-1 65.30 (90.4%) 41.50 (63.1%) 61.36 (74.8%) 46.63 (83.9%) 44.22 (74.3%) 46.46 (81.8%) 50.91 (77.9%)
top-2 65.14 (90.1%) 41.23 (62.7%) 65.57 (80.0%) 46.29 (83.3%) 35.24 (59.2%) 48.60 (85.5%) 50.34 (77.1%)
top-3 65.45 (90.6%) 42.76 (65.0%) 66.05 (80.5%) 45.45 (81.8%) 37.67 (63.3%) 49.45 (87.0%) 51.14 (78.3%)
Oracle 72.27 (100%) 65.74 (100%) 82.01 (100%) 55.57 (100%) 59.51 (100%) 56.83 (100%) 65.32 (100%)

GPT-4o

top-1 62.94 (93.1%) 43.45 (66.0%) 59.50 (75.9%) 54.01 (83.0%) 29.74 (75.8%) 50.49 (80.5%) 50.02 (79.2%)
top-2 62.19 (92.0%) 43.59 (66.2%) 63.54 (81.0%) 56.99 (87.5%) 26.42 (67.4%) 56.04 (89.3%) 51.46 (81.5%)
top-3 62.26 (92.1%) 46.10 (70.0%) 64.93 (82.8%) 56.45 (86.7%) 27.26 (69.5%) 56.34 (89.8%) 52.22 (82.7%)
Oracle 67.58 (100%) 65.88 (100%) 78.45 (100%) 65.10 (100%) 39.22 (100%) 62.74 (100%) 63.16 (100%)

When trained with the same data setup, as demonstrated in Table 2(b)(c), VisRAG-Ret outperforms
text models MiniCPM (OCR) & (Captioner) and the vision model SigLIP by a significant margin.
The advantage is more pronounced in the out-of-domain setting, where VisRAG-Ret achieves 15%
and 22% gains over MiniCPM (OCR) and SigLIP, respectively, compared to 8% and 10% in the
in-domain setting. This indicates that VisRAG-Ret has better generalization capability compared
to text- and vision-centric models. Notably, despite utilizing the same VLM MiniCPM-V 2.0 for
parsing, MiniCPM (Captioner) performs worse than VisRAG-Ret, indicating that directly encoding
with VLMs works better than using VLMs for parsing. This can be attributed to the inevitable
information loss when multi-modality information is transcribed into text.

Further analysis reveals that MiniCPM (OCR) and SigLIP perform differently across datasets:
SigLIP excels in ArxivQA and ChartQA, while MiniCPM (OCR) significantly outperforms SigLIP
in DocVQA and InfographicsVQA. This may be due to the different focuses of the two models:
MiniCPM focuses on text, while SigLIP focuses on visual signals. VisRAG-Ret, built on top of
MiniCPM-V 2.0, with a SigLIP encoder and a MiniCPM language model, combines the merits of
both and performs well across all datasets, capturing more holistic information from a document.

Compared to ColPali, a multi-vector document page embedding model, VisRAG-Ret not only main-
tains superior performance but also achieves much better memory efficiency. ColPali represents a
page with 256KB of data distributed across 1030 128-dim vectors (Faysse et al., 2024), whereas
VisRAG-Ret uses just 4.5KB in a single 2304-dimensional vector. This makes VisRAG-Ret more
suitable for scaling to millions or billions of documents in real-world applications.

Generation Performance. In this experiment, we apply a series of text- and vision-based genera-
tors and methods on top of the same retriever VisRAG-Ret to study their effectiveness in generating
the answer given the query and retrieved documents. Table 3 shows the performance of (a) text-based
generation (TextRAG-Gen), (b) generation using the VLM MiniCPM-V 2.0 which only accepts a
single image as input, and (c) generation using VLMs which accept multiple images as input.

When models are provided with only the ground-truth documents (“Oracle”), VisRAG-Gen mod-
els, which process the document image directly, significantly outperform RAG-Gen models, which
rely solely on extracted text. For instance, MiniCPM-V 2.0 achieves 36% higher performance than
MiniCPM (OCR) when using ground-truth documents. This underscores the importance of visual
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73.4%

22.1%

51.3%

26.6%

(a) TextRAG with MiniCPM (OCR) as the retriever
and MiniCPM-V 2.6 (OCR) as the generator.

76.8%

42.7%

34.1%

23.2%

(b) VisRAG with VisRAG-Ret as the retriever and
MiniCPM-V 2.6 as the generator.

Figure 3: Pipeline performance of (a) TextRAG and (b) VisRAG on InfographicsVQA. We visualize
the portion of queries that have the positive document retrieved at the top-1 position (“Correct Re-
trieval”), and that are answered correctly given the top-1 retrieved document (“Correct Generation”).

clues in extracting answers from documents and indicates that VisRAG-Gen has a higher perfor-
mance upper bound than TextRAG-Gen.

In practical scenarios where models receive the top-1 to 3 retrieved documents, which may in-
clude noise, VisRAG-Gen consistently outperforms TextRAG-Gen within the same model series.
Specifically, for MiniCPM-V 2.0, capable of processing only a single image, the weighted selection
approach demonstrates better performance than page concatenation when handling 2 or 3 retrieved
documents. Simple concatenation may overwhelm the VLM with unnecessary information, while
weighted selection filters answers based on multiple VLM outputs conditioned on individual docu-
ments, thus reducing the information burden.

TextRAG pipelines usually benefit from an increased number of retrieved documents due to better
information coverage (Zhu et al., 2024). However, while weighted selection enhances robustness in
performance, there is no significant performance boost with a higher count of retrieved documents
using this approach. Notably, only the most advanced VLMs, such as GPT-4o, which handle multi-
ple images, show a marked performance increase as the number of retrieved documents rises. This
suggests that reasoning over multiple images remains a challenging task for current VLMs.

End-to-end Performance. In this experiment, we study the effectiveness of the Vis-
RAG pipeline, by comparing it with the TextRAG pipeline. We construct TextRAG
using MiniCPM (OCR) and MiniCPM-V 2.6 (OCR) for retrieval and generation, re-
spectively, and VisRAG using VisRAG-Ret for retrieval and MiniCPM-V 2.6 for gen-
eration. The performance on InfographicsVQA is visually represented in Figure 3.
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Figure 4: Average retrieval performance of
VisRAG-Ret vs. MiniCPM (OCR) trained
with different numbers of training examples.

Notebly, VisRAG achieves a higher rate of ac-
curately retrieving documents than TextRAG, and
demonstrates a significantly improved rate of correct
answer generation from accurately retrieved docu-
ments. The cumulative improvements in both re-
trieval and generation phases result in an overall ac-
curacy increment from 22.1% to 42.7%. Across the
six evaluation datasets, VisRAG shows a 39% rela-
tive accuracy increment on average, as illustrated in
Figure 1. The case study of VisRAG and TextRAG
is presented in Appendix F.

5.2 TRAINING DATA EFFICIENCY

As retrieval acts as the bottleneck in an RAG
pipeline, it is crucial to have an effective retrieval
component to maintain optimal performance. In this
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ArxivQA

InfographicsVQA

Retrieval Retrieval & Generation

Figure 5: Relative retrieval and generation performance of VisRAG, VisRAG (SigLIP), and Tex-
tRAG on different subsets of queries. The X-axes represent the query subsets where the lengths of
the positive documents fall within specific percentile ranges. For comparative analysis, we set Tex-
tRAG’s performance to zero and show the performance differences of other models from TextRAG.

experiment, we study the training data efficiency of VisRAG-Ret by evaluating the performance of
VisRAG-Ret trained under different amounts of synthetic training data, i.e. in the out-of-domain
setting. As shown in Figure 4, when only trained on 20k q-d pairs, VisRAG can surpass bge-large
(OCR). After training on 150k pairs, it can further surpass NV-Embed-v2 (OCR), the SOTA 8B-
sized text embedding model trained on millions of curated text pairs. This highlights VisRAG-Ret’s
high training data efficiency and strong generalization capability, as all models are evaluated out-of-
domain. When compared with MiniCPM (OCR), which uses extracted text for training, VisRAG-Ret
consistently achieves a performance gain of about 17% and exhibits a more stable training process.
The results show VisRAG-Ret’s potential for further performance improvements by scaling up the
training data.

5.3 PERFORMANCE ON DIFFERENT DATA SUBSETS

In this experiment, we assess the retrieval and generation performance of VisRAG and TextRAG
defined in Figure 3, as well as VisRAG (SigLIP), which replaces the retriever in VisRAG with
SigLIP. We report their performance across different data subsets by categorizing queries based on
the lengths of their positive documents, measured by the number of tokens of the extracted text.
Documents with a higher volume of extracted text may prioritize textual information over visual
content. As illustrated in Figure 5, queries in ArxivQA and InfographicsVQA are divided into
equal-sized bins according to the lengths of their relevant documents. For each bin, we calculate
and plot the average performance differences between VisRAG and TextRAG, as well as between
VisRAG (SigLIP) and TextRAG, to compare how each model performs relative to TextRAG. We
observe that, in general, the relative performance of VisRAG and VisRAG (SigLIP) improves as
the length of the relevant document decreases. This suggests that models with vision encoders can
better understand documents that emphasize visual information. However, VisRAG (SigLIP) con-
sistently underperforms VisRAG across all data subsets and, in some cases, even performs worse
than TextRAG. In contrast, VisRAG consistently outperforms TextRAG, indicating that the underly-
ing language model in VisRAG is crucial for better understanding the semantics conveyed through
visual cues.
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6 CONCLUSION

In this paper, we propose VisRAG, a novel retrieval-augmented generation (RAG) paradigm that uti-
lizes vision-language models (VLMs) to facilitate retrieval and generation within an RAG pipeline,
thereby eliminating the parsing stage required in traditional text-based RAG. Our empirical re-
sults demonstrate that VisRAG consistently outperforms text-based RAG on retrieval and generation
while maintaining a simpler pipeline. We hope that VisRAG will inspire future RAG development
to incorporate VLMs for handling multi-modal documents.
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A DATA CONSTRUCTION DETAILS

A.1 SYNTHETIC DATA

Table 4: Statistics of crawled documents. We prompt GPT-4o to generate queries on these docu-
ments.

Name Source Description # Pages
Textbooks https://openstax.org/ College-level textbooks including various subjects 10,000
ICML Papers ICML 2023 ICML papers on various topics 5,000
NeurIPS Papers NeurIPS 2023 NeurIPS papers on various topics 5,000
Manuallib https://www.manualslib.com/ Manuals of various kinds of products 20,000

To augment the training dataset of VisRAG, we gather additional documents from the web and utilize
GPT-4o to generate queries based on these documents. The sources of the collected documents are
listed in Table 4. The prompt employed is shown in Figure 6.

Hello, I have a super rich document library. Assume you are a curious but very ignorant
human. You often ask me questions (queries) to seek a precise document as a
reference for your question or request.

- Now, you have received another task:
- Here is a document image. This is a reference (target) that I provided from the
rich document library based on your query. Your task now is to imagine various
different angles of questions that I might ask.

### Your goal is to accurately find this document target as a potential reference
document candidate through queries in a very rich document library.

### The questions I ask might need references from the text, images, charts, or
implicit meanings in the document.

### Maximum number of query-answer pairs is 6.

Below is your output format:
‘‘‘json
{

"result":[
{

"answer": "",
"query" : ""

},
{

"answer": "",
"query" : ""

},
...

{
"answer": "",
"query" : ""

}
]

}
‘‘‘
{{ document }}

Figure 6: Prompt for GPT-4o to generate queries, where {{ document }} is the document page.

A.2 QUERY FILTERING

As mentioned in Sec. 3.3, a significant portion of queries in VQA datasets are context-dependent
that are unsuitable for retrieval. We prompt llama-3-8b-instruct (AI@Meta, 2024) to filter out such
queries using the prompt in Figure 7, which includes human-annotated samples from DocVQA.

B DOCUMENT PARSING

In this paper, we experiment with two categories of document parsing strategies: pipeline-based
parsing and model-based parsing.
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I have some QA data here, and you can observe that the questions can be divided into
two categories:

The category #A: When you see this question alone without a given document, you are
sure to find a unique document in a corpus to provide a unique answer.

The category #B: When you see this question alone without a given document, you will
find hard to locate a document to give a deterministic answer for this question,
because you will find multiple candidate documents in a corpus, which may lead to
different answers for this question.

The number mentioned on the right of the leftside margin? #B
What is the date mentioned in the second table? #B
What is the full form of PUF? #A
What is the number at the bottom of the page, in bold? #B
Who presented the results on cabin air quality study in commercial aircraft? #A
What is the name of the corporation? #B
To whom this is addressed? #B
How many one-on-one interviews were completed during April 10th through the April 12th?

#A
What is the subject of the document/letter? #B
Who sent the letter? #B
Heading of the document? #B
What is the slope mentioned in the first table? #B
Where were the two magnesium containing papers made at? #A
what is the date in the letter? #B
What is the date mentioned in the letter? #B
Which part of Virginia is this letter sent from? #B
who were bothered by cigarette odors? #A
which cigarette would be better if offered on a thicker cigarette? #A
Cigarettes will be produced and submitted to O/C Panel for what purpose? #A
What is the heading of first table? #B
What is RIP-6 value for KOOL KS? #A
Which hetero-atoms does polar compounds contain? #A
One variable that has implicitly not been controlled? #B
Which corporation’s letterhead is this? #B
what is the contact person name mentioned in letter? #B
what is the date mentioned in this letter? #B
Another model of the 83mm with zero ventilation will be made at Semiworks within how

many weeks? #A
Hand sheets were made utilizing a 30% level of which component? #A
What is the source? #B
What is the heading of the document? #B
What is the subject? #B
Which test is used to evaluate ART menthol levels that has been shipped? #A
How much percent had not noticed any difference in the odor of VSSS? #A
What is the cigarette code of RIP-6(W/O Filter) 21/4SE? #A
What is the meeting date? #B
what is the subject of this letter? #B
what is the index for Retention of Franchise? #B
What is the heading of second table? #B
What is the full form of POVC? #A
what mm Marlboro Menthol were subjectively smoked by the Richmond Panel? #A
What sort of communication/letter is this? #B
According to the listed requirements, what must be the age group of female smokers? #A
How many one-on-one interviews were completed during April 10th through the April 12th?

#A
During the process of prototype production and ringtipping, some cigarettes were

observed to have burn holed in which paper? #A
How many distinct mechanisms appear to play a role in the breakup of a smoke column

into a multi-dimensional flowfield? #A
Where was the conference held? #B
Who is in cc in this letter? #B
Under BOLD, primary production of Blend #24- will be completed by which date? #A
{{ query }} #

Figure 7: Prompt for llama3-8b-instruct to classify queries, where {{ query }} is the query to be
classified. Label B denotes context-dependent queries.
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B.1 PIPELINE-BASED PARSING

We consider the following document parsing pipelines:

Pytesseract. Pytesseract is a Python wrapper for Google’s Tesseract OCR engine, offering a
straightforward interface for text extraction from images. Unlike more complex methods, Pytesser-
act requires minimal pre-processing. By invoking the image to string function, OCR is per-
formed in a single step, directly returning the extracted text. Tesseract internally handles bounding
boxes, confidence scores, and orientation correction.

PPOCR-based Methods. PaddlePaddle OCR (PPOCR) (Du et al., 2020) is widely used for doc-
ument text extraction, covering text detection, classification, and recognition. First, a text detection
model identifies text regions and generates bounding boxes. These regions are then processed by a
classification model to correct orientation issues like rotation or flipping. Next, a recognition model
extracts the textual content from the corrected bounding boxes, returning recognized text with con-
fidence scores. Only results with confidence scores above 0.6 are retained, and the bounding box
coordinates, along with the recognized text, are stored for further processing. We apply the following
strategies to obtain the final parsing result:

• Adjacent Merging: To enhance text coherence, this policy combines adjacent text boxes
based on vertical proximity (within 15 pixels) and horizontal alignment (within 100 pixels),
reducing text fragmentation. This iterative merging process consolidates eligible text boxes
into unified bounding boxes with concatenated text. Finally, the text from the remaining
bounding boxes is combined with line breaks to produce the final result.

• Layout Preserving: This policy maintains the original document structure by ordering text
boxes based on their spatial positions. Spaces and line breaks are dynamically inserted to
reflect horizontal and vertical gaps between text regions. This approach ensures that the
extracted text mirrors the original document layout, preserving its formatting in the final
result.

We run the aforementioned pipelines on our dataset to obtain text-based training and evaluation
data, and fine-tune a MiniCPM retriever to assess performance. The results are presented in Table 5.
Methods based on PPOCR demonstrate significantly better performance compared to pytesseract,
with adjacent merging and layout preserving yielding similar results. Consequently, we opt to use
the adjacent merging policy for our “(OCR)” runs.

Table 5: Overall retrieval performance of different document parsing pipelines.
ArxivQA ChartQA DocVQA InfoVQA PlotQA SlideVQA Average

(c) In-domain: Models Fine-tuned on Synthetic and In-domain data
MiniCPM (Pytesseract) 33.70 49.69 70.43 74.07 36.11 80.40 57.40
MiniCPM (Adjacent Merging) 47.36 54.43 74.13 80.11 41.33 90.49 64.64
MiniCPM (Layout Preserving) 45.26 55.78 73.75 80.22 40.97 90.22 64.37

B.2 MODEL-BASED PARSING

In addition to pipeline-based methods, we also employ a model-based parsing approach using
MiniCPM-V 2.0 to directly transcribe document images into text. This method is referred to as
“(Captioner)”.

To train this model, we collect data from two sources: a) ALLaVA (Chen et al., 2024a) (image, cap-
tion) pairs, and b) VQA documents with descriptions generated by GPT-4V. We use the prompt
in Figure 8 to instruct GPT-4V to generate detailed descriptions of documents from DocVQA,
ChartQA, SlideVQA, InfographicsVQA, TextVQA (Singh et al., 2019), and ArxivQA.

We train MiniCPM-V 2.0 with a batch size of 2048 and a learning rate of 5e-6 for 1 epoch.
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Based on the layout information, output the text in the image. Try not to modify the
text, but you need to indicate the structure such as title, body text, subtitle,
table, etc.

Note:
If there are charts or graphs, they should be described in detail.
If you feel that there are more than 4000 words or most of the text in the image is

unclear or most of the text contents in the image are not written in English, then
directly return <none>.

{{ document }}

Figure 8: Prompt for GPT-4V to generate page description, where {{ document }} is the docu-
ment page.

C MODELS USED IN THIS PAPER

MiniCPM (Hu et al., 2024) is a large language model (LLM) with 2.4 billion non-embedding pa-
rameters, demonstrating capabilities comparable to much larger models, such as Llama2-7B (Tou-
vron et al., 2023) and Gemma-7B (Team et al., 2024). In this paper, we employ MiniCPM to
construct the baseline text-based retriever (Table 2) and generator (Table 3).

SigLIP (Zhai et al., 2023) is a CLIP-style multi-modal model designed to align text and vision
representations. We utilize SigLIP-400m, released by Hugging Face2, which incorporates Flash
Attention 2, increases maximum resolution to 980x980, and adopts the NaViT strategy to allow (a)
variable resolution images and (b) aspect ratio preserved images. In this paper, SigLIP is used to
develop the baseline vision-based retriever (Table 2).

MiniCPM-V 2.0 (OpenBMB, 2024a; Yao et al., 2024) is a vision-language model (VLM) with
2.8 billion non-embedding parameters, built upon SigLIP-400m and MiniCPM. It can process single
images up to 1.8 million pixels (e.g., 1344x1344) at any aspect ratio. We use MiniCPM-V 2.0 to
build VisRAG-Ret (Table 2) and VisRAG-Gen (Table 3(b)), as well as the document parsing model.

MiniCPM-V 2.6 (OpenBMB, 2024b; Yao et al., 2024) is an upgrade of MiniCPM-V 2.0 and
MiniCPM-Llama3-V 2.5 (Yao et al., 2024). It is built upon SigLIP-400M and Qwen2-7B (Yang
et al., 2024) with a total of 8.5B parameters, exihibiting a significant performance improvement
over MiniCPM-Llama3-V 2.5 (Yao et al., 2024). Different from previous models, MiniCPM-V
2.6 can accept multiple images as the input and perform multi-modal in-context learning. It also
demonstrates stronger OCR capabilities. We use MiniCPM-V 2.6 to build VisRAG-Gen (Table 3)
and a text-based generation baseline MiniCPM-V 2.6 (OCR) (Figure 3, Figure 5).

Note that, MiniCPM-Llama3-V 2.5 (Yao et al., 2024) is not used in this paper.

GPT-4o (OpenAI, 2024) is OpenAI’s latest multi-modal model, capable of processing any com-
bination of text, audio, image, and video inputs and generating outputs in text, audio, and image
formats. We use GPT-4o to construct VisRAG-Gen (Table 3) and to synthesize training data.

D ADDITIONAL RESULTS

Table 6 presents the retrieval performance in Recall@10.

E PROMPTS FOR GENERATION

We present the prompts of VisRAG-Gen and TextRAG-Gen in Table 7.

2https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit
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Table 6: Overall retrieval performance in Recall@10.
Model # Para. ArxivQA ChartQA DocVQA InfoVQA PlotQA SlideVQA Average

(a) Off-the-shelf Models
BM25 (OCR) n.a. 42.22 56.69 84.67 79.77 50.51 89.34 67.20
bge-large (2023) (OCR) 335M 35.84 49.58 68.71 84.65 46.65 88.35 62.30
NV-Embed-v2 (2024) (OCR) 7.85B 56.11 65.32 89.52 93.89 52.42 96.54 75.63
SigLIP (2023) 883M 18.16 49.03 43.27 61.83 28.11 66.99 44.57

(b) Out-of-domain: Models Fine-tuned on Synthetic Data
MiniCPM (OCR) 2.72B 47.06 56.69 86.06 90.13 39.52 93.74 68.87
MiniCPM (Captioner) 2.72B 47.27 60.86 81.32 88.91 37.11 91.25 67.79
SigLIP (2023) 883M 49.51 63.65 78.61 82.16 41.36 93.03 68.05
VisRAG-Ret 3.43B 72.52 64.76 90.10 95.21 47.42 95.71 77.62

(c) In-domain: Models Fine-tuned on Synthetic and In-domain data
MiniCPM (OCR) 2.72B 59.21 69.22 89.36 92.72 61.94 95.74 78.03
MiniCPM (Captioner) 2.72B 60.81 67.83 85.68 91.25 58.42 93.50 76.25
SigLIP (2023) 883M 67.12 75.91 84.62 90.81 62.04 95.00 79.25
ColPali (2024) 2.92B 76.46 70.19 96.06 93.65 48.62 96.97 80.33
VisRAG-Ret 3.43B 80.41 72.98 92.97 96.33 61.47 97.03 83.53

Table 7: Prompt templates for generation. “Others” refers to all VQA datasets except ArxivQA.
TextRAG VisRAG

ArxivQA

Hint: {{ parsed document(s) }}
Question: {{ query }}
Options:
A. {{ Option 1 }}
B. {{ Option 2 }}
C. {{ Option 3 }}
D. {{ Option 4 }}
Answer directly with the letter of the correct option as
the first character.

{{ document(s) }}
Question: {query }}
Options:
A. {{ Option 1 }}
B. {{ Option 2 }}
C. {{ Option 3 }}
D. {{ Option 4 }}
Answer directly with the letter of the correct option as
the first character.

Others
Image:{{ parsed document(s) }}
Answer the question using a single word or phrase.
Question:{{ query }}
Answer:

{{ document(s) }}
Answer the question using a single word or phrase.
Question:{{ query }}
Answer:

F CASE STUDY

We show two cases in Table 8 and Table 9. In both instances, we compare VisRAG with TextRAG,
maintaining the same setup as described in the “End-to-end Performance” paragraph in Sec. 5.1.

In the first case from DocVQA, the user queries about “Club Jetty,” however, the term “Club Jetty” in
the relevant document is not successfully extracted due to its decorative font. This leads to TextRAG
failing to retrieve the document, while VisRAG successfully retrieves it.

In the second case from InfographicsVQA, although both TextRAG and VisRAG successfully re-
trieve the document, TextRAG generates an incorrect response due to the loss of layout information,
making it unclear which number (53% or 49%) pertains to Europe. VisRAG effectively utilizes the
layout information and generates the correct answer.
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Table 8: Case study from DocVQA. In this case, VisRAG successfully retrieves the ground-truth
document, while TextRAG fails, leading to VisRAG’s correct generation and TextRAG’s incorrect
generation.

TextRAG VisRAG
Query On which day is Club Jetty closed?

Retrieved
Top-1 Document

✗ Incorrect ✓ Correct

Document
Parsing Result

SMOKERS←↩ EXPRESS←↩ Express←↩ Airlines←↩ Yes that’s
right. An Airline for←↩ smokers is coming! But you←↩ say,
they can’t do that, what about←↩ the FAA regulations?←↩ No
problem. Smokers Express is←↩ a club, providing service←↩ to
members only: With a little bit←↩ of luck and your strong←↩
support we may see Smokers←↩ Express Airlines making←↩
news and carrying smokers←↩ in style by this summer.←↩ K
No screaming babies←↩ (members must be 18)←↩ M Compli-
mentary newspaper←↩ N Free destination area maps←↩ O Dis-
counts on area attractions←↩ p Inflight phone service←↩ Q Dis-
count cruise packages←↩ from Smokers Travel←↩ R A subscrip-
tion to ”Let’s Party”←↩ the official Smokers←↩ Smokers Express
is the brainchild←↩ of William Walts and←↩ George ”Mickey”
Richardson, a←↩ couple of Cocoa Beach,←↩ Florida business-
men who like to←↩ smoke. They organized←↩ the club, in
December of last year.←↩ The club is headquartered←↩ at the
Space Coast airport←↩ near Cocoa Beach and←↩ has made ar-
rangements to lease←↩ up to 29 specially equipped←↩ and re-
cently reconditioned DC-9s.←↩ Some of the destinations they←↩
plan to serve with non-stop service←↩ from Space Coast exec-
utive airport←↩ include Orlando, Atlanta, Chicago,←↩ Dallas,
Las Vegas, and Atlantic City←↩ (Express Travel Magazine)←↩
S Rental car discounts←↩ T Smokers Express discount home←↩
shopping guide←↩ U Great contests and sweepstakes←↩ for mem-
bers only←↩ V Free Lotto ticket for each passenger←↩ W Discount
air freight rates←↩ X Discount coupons for destination←↩ area
restaurants←↩ Y Special party flights to Las Vegas←↩ and Atlantic
City with every 7th and←↩ 11th flight free←↩ Z The best trained,
most attentive←↩ staff of employee/owners←↩ in the industry.←↩
With the help of consultant,←↩ Bryant Chestnut (formerly of
the←↩ FAA), Smokers Express is←↩ beginning the FAA←↩ Cer-
tification process.←↩ Those are the ABC’s of traveling←↩ on a
great fun new←↩ smokers airline where membership←↩ does have
real privileges.←↩ The first 50,000 memberships are←↩ charter
life-time.←↩ Membership in the club costs←↩ $25 annually and
includes←↩ a number of special perks←↩ which you will find
interesting.←↩ Membership is restricted←↩ to persons 18 years of
age←↩ or older. Take a look at←↩ what members will receive:←↩
If you would like more←↩ information about Smokers←↩ Express
Airlines you can call or←↩ write:←↩ Smokers Express←↩ Suite
102←↩ 25 South Atlantic Avenue←↩ Cocoa Beach, FL 32931←↩
(407) 783-6124←↩ A Smokers Express Numbered←↩ Members
Certificate←↩ B Smokers Express Gold Travel←↩ Card←↩ C
V.I.P. Lounges at flight initiating←↩ airports←↩ D Free smokes
in flight←↩ E Free headphones←↩ F Free inflight movies←↩ G
Full beverage service←↩ H Real ashtrays←↩ Smoker Express is
taking←↩ applications for personnel←↩ for practically every as-
pect of←↩ operations. These positions←↩ are available to mem-
bers only.←↩ t Real food for real people—Steaks←↩ & Burgers←↩
Great tasting munchies for happy←↩ hour.←↩ American Smoker’s
Journal←↩ 38 WINTER ISSUE

FXPLOREKAUAI←↩ (We mail gift paks)←↩ Windsurfing←↩
KAUAIWINDSURFING←↩ EXPERIENCEIS←↩ NOW
OPEN←↩ Learn to Windsurf←↩ (certified instruction)←↩
Special introductory←↩ Lesson Rate←↩ on your way←↩ fresh←↩
from the roaster←↩ fern grotto←↩ WAILUA←↩ MARINA←↩
RESTAURANT←↩ On the banks of the Wailua River←↩ to
you←↩ COFFEE←↩ & NUT←↩ ROASTING←↩ CENTER←↩
”HOME STYLE COOKING”←↩ famous baked stuffed pork
chops←↩ and 28 other entrees←↩ EASY LEARNING←↩
EXCURSIONS←↩ RENTALS←↩ Phone: 245-9290←↩ or Kauai
Surf ext. 7830←↩ The Market Place-shop 39←↩ at the Coconut
Plantation←↩ Waipouli, Kauai←↩ coffee tea nuts spices herbs←↩
Complimentary transportation←↩ (from Wailua area Hotels-
dinner only)←↩ Phone: 822-4311←↩ NOW! lunch daily from
11 a.m.←↩ PAPERBACK←↩ HUT←↩ Hi, my name is Sunny
...←↩ and I own one of the most←↩ unique restaurants in the
world←↩ in Lihue, Kauai.←↩ It’s called the Casa Blanca,←↩
and we offer Kauai’s only late←↩ gourmet dining service in a
very←↩ friendly and casual atmosphere.←↩ We’re open every
night from←↩ 5:30-10:30 for dinner with←↩ Brunch on Sundays
and live←↩ entertainment in our OASIS←↩ lounge until the wee
small←↩ hours. Oh Yes, we specialize←↩ in Italian and French←↩
cuisine with lots of fresh←↩ local seafood and Kauai’s←↩ only
Fresh Fruit Daquiris.←↩ Call us for reservations at 245-9181←↩
and free hotel pickup←↩ from most resorts.←↩ I know you’ll
love←↩ Kauai and have the←↩ time of your life←↩ at the Casa
Blanca.←↩ the←↩ Bestsellers←↩ Games←↩ Hawaiiana←↩ We
have the most complete selection←↩ of paperback books on
the island.←↩ Over 5,000 books in stock.←↩ OPEN EARLY-
CLOSE LATE←↩ The Market Place at Coconut Plantation←↩
Waipouli, Kauai←↩ 822-3216←↩ CLUBIETTY←↩ Restaurant
and Cabaret←↩ Nawiliwili Bay←↩ CANTONESE FOOD←↩
a specialty of the house←↩ COMPLETE MENU-including←↩
STEAK-LOBSTER-MAHIMAHI←↩ DINNER: 5:30-9:45
p.m.←↩ Closed TUESDAYS←↩ MUSIC to Dine & Dance by-
7:30 p.m.←↩ After dinner Dance Band & DISCO←↩ Courtesy
pick-up-Lihue area←↩ 245.4970....after hours 245.3856←↩ 2989
HALEKO ROAD←↩ 245-9181←↩ SUGAR MILL SNACKS←↩
ASIAJOE←↩ .MUUMUUS. SOUVENIRS←↩ HANDICRAFTS
IMPORTS←↩ COCONUT←↩ PLANTATION-←↩ MARKET
PLACE←↩ 3←↩ o Fresh Fruit←↩ Drinks←↩ e Cold←↩ Drinks←↩
e Sandwiches←↩ Macadamia←↩ Nut Waffle←↩ Fresh Fruit←↩ o
Ice Cream←↩ c Berry←↩ VELVET PAINTINGS. T-SHIRTS←↩
The Market Place At Coconut Plantation←↩ 484 Kuhio Hwy. at
Waipouli, Kapaa, Kauai←↩ OPEN 7 AM M-S; Sun. 8 AM←↩
822-9981←↩ 36←↩ Latitude 20/November 1978

Answer Mondays ✗ Incorrect Tuesdays ✓ Correct
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Table 9: Case study from InfographicsVQA. In this case, both VisRAG and TextRAG successfully
retrieve the correct document; however, only VisRAG effectively leverages the layout information,
enabling accurate generation. In contrast, TextRAG suffers from information loss of the layout,
resulting in incorrect responses.

TextRAG VisRAG
Query What percent of account holders in Europe are using LinkedIn for finding job?

Retrieved
Top-1 Document

✓ Both Correct

Document
Parsing Result

Social media←↩ job seeking trends←↩ Michael Page’s annual global survey of financial services
and banking←↩ employees was conducted in April 2014,more than 3,300 people participated←↩
Linkedln←↩ Linkedin’s popularity continues to grow, though many job seekers don’t think of it
as part of←↩ their strategy.So hirers need to look to other sourcing channels too←↩ What pro-
portion of account holders←↩ use Linkedin for job seeking?←↩ 93←↩ %←↩ 30%←↩ of respon-
dents have←↩ anaccount-up←↩ 10% from last year←↩ more women←↩ than men say←↩ they don’t
have←↩ an account←↩ 53%←↩ In Europe←↩ 49%←↩ In North America←↩ 40%←↩ In the UK←↩
Facebook←↩ Despite last year’s hype around Graph Search,Facebook hasn’t made any progress with
monetising←↩ its recruitment potential -jobseekers remain very negative about Facebook playing any
part←↩ 13%←↩ said they’d be happy←↩ to see adverts←↩ 92%←↩ said they would not be←↩ happy
to be contacted by←↩ a recruiter on Facebook←↩ 1%←↩ Don’t bank on social media – Michael
Page brings you a broader range of talent, and jobs←↩ www.michaelpage.com.au/salarycentre←↩ of
respondents←↩ (who are job seekers) said they←↩ would use it to look for jobs←↩ MichaelPage←↩
Financial Services←↩ Specialists in financial services recruitment←↩ www.michaelpage.com.au←↩

Answer 49% ✗ Incorrect 53% ✓ Correct
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